The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonst...The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures,the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W(with a periodicity 2 W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected ■ dispersion for both massive and massless fermions,where q ~π/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.展开更多
A magnetic semiconductor whose electronic charge and spin can be regulated together will be an important compon-ent of future spintronic devices.Here,we construct a two-dimensional(2D)Fe doped SnS_(2)(Fe-SnS_(2))homog...A magnetic semiconductor whose electronic charge and spin can be regulated together will be an important compon-ent of future spintronic devices.Here,we construct a two-dimensional(2D)Fe doped SnS_(2)(Fe-SnS_(2))homogeneous junction and investigate its electromagnetic transport feature.The Fe-SnS_(2) homojunction device showed large positive and unsatur-ated magnetoresistance(MR)of 1800%in the parallel magnetic field and 600%in the vertical magnetic field,indicating an obvi-ous anisotropic MR feature.In contrast,The MR of Fe-SnS_(2) homojunction is much larger than the pure diamagnetic SnS_(2) and most 2D materials.The application of a gate voltage can regulate the MR effect of Fe-SnS_(2) homojunction devices.Moreover,the stability of Fe-SnS_(2) in air has great application potential.Our Fe-SnS_(2) homojunction has a significant potential in future mag-netic memory applications.展开更多
[Objectives]To make targeted breeding of new type of Shuxuan beef cattle,study and determine the breeding target traits of new type of Shuxuan beef cattle.[Methods]The difference method was used to calculate the margi...[Objectives]To make targeted breeding of new type of Shuxuan beef cattle,study and determine the breeding target traits of new type of Shuxuan beef cattle.[Methods]The difference method was used to calculate the marginal benefit of each target trait,and the economic weight of the corresponding breeding target trait was obtained.[Results]The marginal benefits of weaning weight,fattening daily gain,18-month weight,carcass quality,dressing percentage,pure meat percentage,age at first calving,calving interval and stay group time were 35.86,13.76,13.05,421.96,375.55,22.58,-4.45,-27.53,and 1555.24,respectively.The relative economic weight ratio of growth traits,carcass traits,and reproductive traits was close to 4∶1∶5.Through marginal benefit analysis,the economic benefits obtained by improving carcass quality,dressing percentage and stay group time were significantly higher than other traits.[Conclusions]It is expected to provide a theoretic basis for establishing the target trait selection indicators for the new type of Shuxuan beef cattle.展开更多
This paper analyzes the actual situation and bottleneck problems in the development of beef cattle industry in Xuanhan County.In view of the existing problems,this paper puts forward reasonable suggestions,with a view...This paper analyzes the actual situation and bottleneck problems in the development of beef cattle industry in Xuanhan County.In view of the existing problems,this paper puts forward reasonable suggestions,with a view to better exploring the development model of characteristic beef cattle industry in Xuanhan County based on the unique cattle resources of Xuanhan County,and effectively promoting the implementation of the strategy of rural revitalization.展开更多
In domestic cattle,the body size traits have important implications in terms of breed characteristics and production performance.Shuxuan cattle is a dual-purpose breed mainly raised in Sichuan province,China,for which...In domestic cattle,the body size traits have important implications in terms of breed characteristics and production performance.Shuxuan cattle is a dual-purpose breed mainly raised in Sichuan province,China,for which we have known less about the genetic parameters and underlying candidate genes in relation to the body size traits.In this study,we obtained the genome-wide single nucleotide polymorphisms(SNPs)using the Illumina Bovine BeadChip in 275 Shuxuan cattle.These SNPs were first used for estimating genetic parameters for the withers height(WH)and diagonal body length(BL).Using the bivariate animal model,the estimates(±standard error)of heritabilities were 0.71±0.22 and 0.49±0.29 for BL,and their genetic correlation was 0.64±0.37.Second,the genome-wide association study(GWAS)was performed.However,these did not result into genome-wide significant SNPs for both WH and BL traits.According to a less stringent suggestive significance,some positional candidate genes were found,and some of them(such as FAM110B,TAS1R2,PAX3,and FHIT)were previously reported in literature to be associated with body size traits in cattle.In conclusion,we estimated the genetic parameters in Shuxuan cattle using genomic information for the first time,which are required for implementing the genomic selection programs in the future.展开更多
Reliable ohmic contacts were established in order to study the strain sensitivity of nanowires and nanobelts.Significant conductance increases of up to 113%were observed on bending individual ZnO nanowires or CdS nano...Reliable ohmic contacts were established in order to study the strain sensitivity of nanowires and nanobelts.Significant conductance increases of up to 113%were observed on bending individual ZnO nanowires or CdS nanobelts.This bending strain-induced conductance enhancement was confirmed by a variety of bending measurements,such as using different manipulating tips(silicon,glass or tungsten)to bend the nanowires or nanobelts,and is explained by bending-induced effective tensile strain based on the principle of the piezoresistance effect.展开更多
Elastic strain has been an important method to regulate the electronic structures and physical properties of nanoscale semiconductors due to the promising potentials in improving the performance of their optoelectroni...Elastic strain has been an important method to regulate the electronic structures and physical properties of nanoscale semiconductors due to the promising potentials in improving the performance of their optoelectronic devices.Here,we report the investigation of bending strain effects on the optical and optoelectric properties of individual gallium nitride(GaN)nanowires(NWs).By charactering the near-band emission spectrum of individual GaN NWs at different bending strains with low temperature cathodoluminescence(CL),we reveal that the near-band emission splits into two peaks,where the low energy peak displays a linear redshift with increasing the bending strain while the high energy one shows a slight blueshift.Further localized ultraviolet(UV)photoresponse measurements illustrate that the photoresponse of the GaN NWs shows a linear increase with the bending train,and the maximum enhancement is more than two orders of magnitude.The experimental observations are well interpreted by theoretical calculations on the strain modulation on the electronic band structure of GaN combined with analysis of carrier dynamics and optical waveguide effect in the bending strain field.Our results not only shed light on the bending strain effects on the optical and optoelectric properties of semiconductors,but also hold potential to help the future design of high performance nano-optoelectric devices.展开更多
文摘The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures,the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W(with a periodicity 2 W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected ■ dispersion for both massive and massless fermions,where q ~π/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207500)the National Natural Science Foundation of China (Grant No. 62125404)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43000000)
文摘A magnetic semiconductor whose electronic charge and spin can be regulated together will be an important compon-ent of future spintronic devices.Here,we construct a two-dimensional(2D)Fe doped SnS_(2)(Fe-SnS_(2))homogeneous junction and investigate its electromagnetic transport feature.The Fe-SnS_(2) homojunction device showed large positive and unsatur-ated magnetoresistance(MR)of 1800%in the parallel magnetic field and 600%in the vertical magnetic field,indicating an obvi-ous anisotropic MR feature.In contrast,The MR of Fe-SnS_(2) homojunction is much larger than the pure diamagnetic SnS_(2) and most 2D materials.The application of a gate voltage can regulate the MR effect of Fe-SnS_(2) homojunction devices.Moreover,the stability of Fe-SnS_(2) in air has great application potential.Our Fe-SnS_(2) homojunction has a significant potential in future mag-netic memory applications.
基金Key Technology R&D Program of Sichuan Province(2019YFD0123)Key R&D Project of Sichuan Science and Technology Plan(2021YFYZ0001)Sichuan Beef Cattle Innovation Team of Modern Agricultural Industrial Technology System(SCCXTD-2021-13).
文摘[Objectives]To make targeted breeding of new type of Shuxuan beef cattle,study and determine the breeding target traits of new type of Shuxuan beef cattle.[Methods]The difference method was used to calculate the marginal benefit of each target trait,and the economic weight of the corresponding breeding target trait was obtained.[Results]The marginal benefits of weaning weight,fattening daily gain,18-month weight,carcass quality,dressing percentage,pure meat percentage,age at first calving,calving interval and stay group time were 35.86,13.76,13.05,421.96,375.55,22.58,-4.45,-27.53,and 1555.24,respectively.The relative economic weight ratio of growth traits,carcass traits,and reproductive traits was close to 4∶1∶5.Through marginal benefit analysis,the economic benefits obtained by improving carcass quality,dressing percentage and stay group time were significantly higher than other traits.[Conclusions]It is expected to provide a theoretic basis for establishing the target trait selection indicators for the new type of Shuxuan beef cattle.
基金National Key R&D Program(2018YFD0501705)Key R&D Project of Sichuan Science and Technology Program(18ZDYF3215)Sichuan Beef Cattle Innovation Team of Modern Agricultural Industrial Technology System(sccxtd-2020-13).
文摘This paper analyzes the actual situation and bottleneck problems in the development of beef cattle industry in Xuanhan County.In view of the existing problems,this paper puts forward reasonable suggestions,with a view to better exploring the development model of characteristic beef cattle industry in Xuanhan County based on the unique cattle resources of Xuanhan County,and effectively promoting the implementation of the strategy of rural revitalization.
基金Supported by the Sichuan Province Key Research and Development Project(2022YFYZ0006)the Sichuan Province Science and Technology Planning Project(2021YFYZ0001).
文摘In domestic cattle,the body size traits have important implications in terms of breed characteristics and production performance.Shuxuan cattle is a dual-purpose breed mainly raised in Sichuan province,China,for which we have known less about the genetic parameters and underlying candidate genes in relation to the body size traits.In this study,we obtained the genome-wide single nucleotide polymorphisms(SNPs)using the Illumina Bovine BeadChip in 275 Shuxuan cattle.These SNPs were first used for estimating genetic parameters for the withers height(WH)and diagonal body length(BL).Using the bivariate animal model,the estimates(±standard error)of heritabilities were 0.71±0.22 and 0.49±0.29 for BL,and their genetic correlation was 0.64±0.37.Second,the genome-wide association study(GWAS)was performed.However,these did not result into genome-wide significant SNPs for both WH and BL traits.According to a less stringent suggestive significance,some positional candidate genes were found,and some of them(such as FAM110B,TAS1R2,PAX3,and FHIT)were previously reported in literature to be associated with body size traits in cattle.In conclusion,we estimated the genetic parameters in Shuxuan cattle using genomic information for the first time,which are required for implementing the genomic selection programs in the future.
基金by National Natural Science Foundation of Chian(NSFC)(90606023,20731160012,10804003),973 program(2007CB936202/04,2009CB623703,MOST)of China and NSFC/RGC(N HKUST615/06).D.P.Y.is supported by the Cheung Kong scholar program,and by the Research Fund for the Doctoral Program of Higher Education(RFDP),Ministry of Education,China.
文摘Reliable ohmic contacts were established in order to study the strain sensitivity of nanowires and nanobelts.Significant conductance increases of up to 113%were observed on bending individual ZnO nanowires or CdS nanobelts.This bending strain-induced conductance enhancement was confirmed by a variety of bending measurements,such as using different manipulating tips(silicon,glass or tungsten)to bend the nanowires or nanobelts,and is explained by bending-induced effective tensile strain based on the principle of the piezoresistance effect.
基金This work was supported by the National Natural Science Foundation of China(No.11974191)the National Key Research and Development Program of China(No.2020YFA0309300)+2 种基金the Natural Science Foundation of Tianjin(Nos.20JCZDJC00560 and 20JCJQJC00210)the 111 Project(No.B07013)the“Fundamental Research Funds for the Central Universities”,Nankai University(Nos.91923139,63213040,and C029211101).
文摘Elastic strain has been an important method to regulate the electronic structures and physical properties of nanoscale semiconductors due to the promising potentials in improving the performance of their optoelectronic devices.Here,we report the investigation of bending strain effects on the optical and optoelectric properties of individual gallium nitride(GaN)nanowires(NWs).By charactering the near-band emission spectrum of individual GaN NWs at different bending strains with low temperature cathodoluminescence(CL),we reveal that the near-band emission splits into two peaks,where the low energy peak displays a linear redshift with increasing the bending strain while the high energy one shows a slight blueshift.Further localized ultraviolet(UV)photoresponse measurements illustrate that the photoresponse of the GaN NWs shows a linear increase with the bending train,and the maximum enhancement is more than two orders of magnitude.The experimental observations are well interpreted by theoretical calculations on the strain modulation on the electronic band structure of GaN combined with analysis of carrier dynamics and optical waveguide effect in the bending strain field.Our results not only shed light on the bending strain effects on the optical and optoelectric properties of semiconductors,but also hold potential to help the future design of high performance nano-optoelectric devices.