To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative ana...The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.展开更多
Lagerstroemia L.(Lythraceae)is a widely distributed genus of trees and shrubs native to tropical and subtropical environments from Southeast Asia to Australia,with numerous species highly valued as ornamentals.Althoug...Lagerstroemia L.(Lythraceae)is a widely distributed genus of trees and shrubs native to tropical and subtropical environments from Southeast Asia to Australia,with numerous species highly valued as ornamentals.Although the plastomes of many species in this genus have been sequenced,the rates of functional gene evolution and their effect on phylogenetic analyses have not been thoroughly examined.We compared three plastome sequence matrices to elucidate how differences in these datasets affected phylogenetic analyses.Robust phylogenetic relationships for Lagerstroemia species were reconstructed based on different plastome sequence partitions and multiple phylogenetic methods.Identification of single-nucleotide variants within different genes also provides basic data on the patterns of functional gene evolution in Lagerstroemia and may provide insights into how those mutations affect protein structure and potentially drive divergence via cytonuclear incompatibility.These results as well as analyses of non-synonymous and synonymous mutations,indicate that heterotachic modes of evolution are present in functional plastome genes and should be accounted for in the analyses of molecular evolution.In addition,divergence events within the Lagerstroemia were dated for the first time.Several of the divergence estimates corresponded to well-known Earth history events,such as the reduction in global temperatures at the Eocene/Oligocene boundary.Our analyses conducted in Lagerstroemia here dissects the various patterns in the divergence of Lagerstroemia and may provide a useful guide to help plant breeders,as well as the necessity of using plastomic data and as possible as to combine evidence from morphological characteristics to investigate the complicated interspecies relationship and the evolutionary dynamics of species.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative ...Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response.This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells.Methods:Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines,respectively.Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells(CAR133-i502-NK92).The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release,the RTCA assay,and the degranulation test,as well as measuring tumor bioluminescence signal intensity in mice xenografts.Results:We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation(9.0×10^(4)cells vs.7.0×10^(4)cells)and specific anti-tumor activities in vitro and in a xenogeneic mouse model,and were well-tolerated.Notably,CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells.Furthermore,in hCD133+/hCD133−mixed cancer xenograft models,CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts(n=5,P=0.0297).Greater T-cell infiltration was associated with greater anti-tumor potency(P<0.0001).Conclusions:Armed with a CBLB502 TLR5 agonist,CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner.This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.展开更多
One of the main obstacles hindering the exploitation of high-temperature and high-pressure oil and gas is the sealing integrity of the cement sheath.Analyzing the microstructure of the cement sheath is therefore an im...One of the main obstacles hindering the exploitation of high-temperature and high-pressure oil and gas is the sealing integrity of the cement sheath.Analyzing the microstructure of the cement sheath is therefore an important task.In this study,the microstructure of the cement sheath is determined using a CT scanner under different temperature and pressure conditions.The results suggest that the major cause of micro-cracks in the cement is the increase in the casing pressure.When the micro-cracks accumulate to a certain extent,the overall structure of the cement sheath is weakened,resulting in gas channeling,which poses a direct threat to the safe production of oil and gas.A change in the casing temperature has a limited effect on the microstructure of the cement sheath.展开更多
Adoptive cell transfer(ACT)using chimeric antigen receptor(CAR)modified T cells and T cell receptor(TCR)engineered T cells has shown therapeutic efficacy in cancer treatment1,2.CAR T cells are widely applicable to tum...Adoptive cell transfer(ACT)using chimeric antigen receptor(CAR)modified T cells and T cell receptor(TCR)engineered T cells has shown therapeutic efficacy in cancer treatment1,2.CAR T cells are widely applicable to tumor patients because of their ability to directly identify tumor cells in an MHCindependent manner.展开更多
Bougainvillea is a perennial ornamental shrub that is highly regarded in ornamental horticulture around the world.However,the absence of genome data limits our understanding of the pathways involved in bract coloratio...Bougainvillea is a perennial ornamental shrub that is highly regarded in ornamental horticulture around the world.However,the absence of genome data limits our understanding of the pathways involved in bract coloration and breeding.Here,we report a chromosome-level assembly of the giga-genome of Bougainvillea×buttiana‘Mrs Butt’,a cultivar thought to be the origin of many other Bougainvillea cultivars.The assembled genome is∼5 Gb with a scaffold N50 of 151756278 bp and contains 86572 genes which have undergone recent whole-genome duplication.We confirmed that multiple rounds of whole-genome multiplication have occurred in the evolutionary history of the Caryophyllales,reconstructed the relationship in the Caryophyllales at whole genome level,and found discordance between species and gene trees as the result of complex introgression events.We investigated betalain and anthocyanin biosynthetic pathways and found instances of independent evolutionary innovations in the nine different Caryophyllales species.To explore the potential formation mechanism of diverse bract colors in Bougainvillea,we analyzed the genes involved in betalain and anthocyanin biosynthesis and found extremely low expression of ANS and DFR genes in all cultivars,which may limit anthocyanin biosynthesis.Our findings indicate that the expression pattern of the betalain biosynthetic pathway did not directly correlate with bract color,and a higher expression level in the betalain biosynthetic pathway is required for colored bracts.This improved understanding of the correlation between gene expression and bract color allows plant breeding outcomes to be predicted with greater certainty.展开更多
Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological heal...Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological health.To create a clean and positive Internet environment,network enforcement agencies need an automatic and efficient pornographic image recognition tool.Previous studies on pornographic images mainly rely on convolutional neural networks(CNN).Because of CNN’s many parameters,they must rely on a large labeled training dataset,which takes work to build.To reduce the effect of the database on the recognition performance of pornographic images,many researchers view pornographic image recognition as a binary classification task.In actual application,when faced with pornographic images of various features,the performance and recognition accuracy of the network model often decrease.In addition,the pornographic content in images usually lies in several small-sized local regions,which are not a large proportion of the image.CNN,this kind of strong supervised learning method,usually cannot automatically focus on the pornographic area of the image,thus affecting the recognition accuracy of pornographic images.This paper established an image dataset with seven classes by crawling pornographic websites and Baidu Image Library.A weakly supervised pornographic image recognition method based on multiple instance learning(MIL)is proposed.The Squeeze and Extraction(SE)module is introduced in the feature extraction to strengthen the critical information and weaken the influence of non-key and useless information on the result of pornographic image recognition.To meet the requirements of the pooling layer operation in Multiple Instance Learning,we introduced the idea of an attention mechanism to weight and average instances.The experimental results show that the proposed method has better accuracy and F1 scores than other methods.展开更多
The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze th...The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze the fundamental oil and gas accumulation processes occurring in the Songliao Basin,contrasting tight oil sand reservoirs in the south with tight gas sand reservoirs in the north.This is done using geochemical data,constant-rate and conventional mercury injection experiments,and fluid inclusion analyses.Our results demonstrate that as far as fluid mobility is concerned,the expulsion center coincides with the overpressure zone,and its boundary limits the occurrence of tight oil and gas accumulations.In addition,the lower permeability limit of high-quality reservoirs,controlled by pore-throat structures,is 0.1×10^-3μm^2 in the fourth member of the Lower Cretaceous Quantou Formation(K1q^4)in the southern Songliao Basin,and 0.05×10^-3μm^2 in the Lower Cretaceous Shahezi Formation(K1sh)in the northern Songliao Basin.Furthermore,the results indicate that the formation of tight oil and gas reservoirs requires the densification of reservoirs prior to the main phase of hydrocarbon expulsion from the source rocks.Reservoir“sweet spots”develop at the intersection of high-quality source rocks(with high pore pressure)and reservoirs(with high permeability).展开更多
A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation.The compound extrusion plates have cracked at 290℃ and 3 mm/s.According to this pheno...A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation.The compound extrusion plates have cracked at 290℃ and 3 mm/s.According to this phenomenon,a model was built to investigate the crack generation and development between the 6061 Al and AZ31 Mg alloy during the compound extrusion process by DEFORM-3D.The cracking behavior of the Mg/Al composite rod with a soft Mg AZ31 core and a hard Al 6061 sleeve were systematically studied to disclose the influence of microstructure on crack in the different regions.The simulation results show that the distribution of strain and velocity has significant differences due to the influence of dies structure and material properties at different locations in the same region.The experimental results show that in the same conditions,there are differences in recrystallization and texture weakening of AZ31 Mg alloys and 6061 Al alloy,which are important factors for the formation of crack.Both the Mg layer and the Al layer have a homogeneous microstructure in the region d.展开更多
The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density g...The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density gradient centrifugation method was adopted to obtain the coal macerals.By combining thermogravimetric analysis and online mass spectrometry,the influence of the heating rate and oxygen carrier(Fe2O3)blending ratio on product distribution was discussed.The macroscopic kinetic parameters were solved by the Kissinger-Akahira-Sunose(KAS)method,and the main gaseous product formation kinetic parameters were solved by the iso-conversion method.The results of vitrinite during slow heating chemical looping gasification showed that the main weight loss interval was 400–600℃,and the solid yield of sample vitrinite-Fe-10 at different heating rates was 64.30%–69.67%.When b=20℃·min^(-1),the maximum decomposition rate of vitrinite-Fe-10 was 0.312%min1.The addition of Fe2O_(3)reduced the maximum decomposition rate,but by comparing the chemical looping conversion characteristic index,it could be inferred that the chemical looping gasification of vitrinite might produce volatile substances higher than the pyrolysis process of vitrinite alone.The average activation energy of the reaction was significantly reduced during chemical looping gasification of vitrinite,which was lower than the average activation energy of 448.69 kJ·mol^(-1) during the pyrolysis process of vitrinite alone.The gaseous products were mainly CO and CO_(2).When the heating rate was 10℃·min^(-1),the highest activation energy for CH4 formation was 21.353 kJ·mol^(-1),and the lowest activation energy for CO formation was 9.7333 kJ·mol^(-1).This study provides basic data for exploring coal chemical looping gasification mechanism and reactor design by studying the chemical looping gasification process of coal macerals。展开更多
The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 5...The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.展开更多
Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier...Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.展开更多
A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and...A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and tectonic significance.LA-ICP-MS U-Pb zircon dating yielded a 442.7±5.8 Ma age,indicating that the granodiorite porphyry was emplaced during the Llandovery Silurian of the Early Paleozoic.The granodiorite porphyry shares the same geochemical characteristics such as Eu negative anomaly as other syn-tectonic granite plutons in the region,including the granodiorite porphyry in Dawangding and granite porphyries in the Dali Cu-Mo deposit and Longtoushang old deposit,indicating a similar magma evolution process.The Xinping granodiorite porphyry has high contents of SiO2(67.871.8%)and K2O(1.78-3.42%)and is metaluminous-peraluminous with A/CNK ratios ranging from 0.97 to 1.06,indicative of high-potassium calc-alkaline to calc-alkaline affinity.It is a I-type granite enriched in large ion lithophile elements Rb,Sr,while depleted in Ba and high field-strength element Nb.Tectonically,a collision between the Yunkai Block from the south and the Guangxi Yunnan-North Vietnam Block from the north during the Early Paleozoic was followed by uplifting of the Dayaoshan terrane.The Xinping granodiorite porphyry was likely emplaced during the collision.Sr-Nd isotopic analyses show that the granodiorite porphyry has initial 87Sr/86Sr ratios(Isr)of 0.7080-0.7104,εNd(t)range from-0.08 to-4.09,and t2DM between 1.19 and 1.51 Ga,well within the north-east low-value zone of the Cathaysia block,indicating a Paleoproterozoic Cathaysia basement source and an involvement of under plating mantle magma.Field observations,geochronological data,and 3D spatial distribution all lead to the conclusion that the Early Paleozoic Xinping granodiorite porphyry does not have any metallogenic and temporal relationships with the Xinping gold deposit(which has a Jurassic-Early Cretaceous age based on previous studies)but a close metallogenic relation to W-Mo mineralization.展开更多
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrins...Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrinsic low immunogenicity of cancer cells(CCs)that allows them to escape recognition by immune cells of the body.Immunogenic cell death(ICD),which is a form of regulated cell death,engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment(TME),ultimately evoking the damage-associated molecular pattern(DAMP)signals to activate tumor-specific immunity.The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity.At the same time,they reprogram TME with a“cold-warmhot”immune status,ultimately amplifying and sustaining dendritic cell-and T cell-dependent innate sensing as well as the antitumor immune responses.In this review,we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions.Additionally,we highlight how this dynamic interaction contributes to priming tumor immunogenicity,thereby boosting anticancer immune responses.We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.展开更多
After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of sc...After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of scale structuring, approaches and indicator selection, and determines their common base. From this base, the fundamentals of the City Intelligence Quotient (City IOD Evaluation System are developed and five dimensions are selected after a clustering analysis. The basic version, City IQ Evaluation System 1.0, involves 275 experts from 14 high-end research institutions, which include the Chinese Academy of Engineering, the National Academy of Science and Engineering (Germany), the Royal Swedish Academy of Engineering Sciences, the Planning Management Center of the Ministry of Housing and Urban-Rural Development of China, and the Development Research Center of the State Council of China. City IQ Evaluation System 2.0 is further developed, with improvements in its universality, openness, and dy- namic adjustment capability. After employing deviation evaluation methods in the IQ assessment, City IQ Evaluation System 3.0 was conceived. The research team has conducted a repeated assessment of 41 intelligent cities around the world using City IQ Evaluation System 3.0. The results have proved that the City IQ Evaluation System, developed on the basis of intelligent life, features more rational indicators selected from data sources that can offer better universality, openness, and dynamics, and is more sen- sitive and precise.展开更多
Urban air mobility(UAM)is an emerging concept proposed in recent years that uses electric vertical takeoff and landing vehicles(eVTOLs).UAM is expected to offer an alternative way of transporting passengers and goods ...Urban air mobility(UAM)is an emerging concept proposed in recent years that uses electric vertical takeoff and landing vehicles(eVTOLs).UAM is expected to offer an alternative way of transporting passengers and goods in urban areas with significantly improved mobility by making use of low-altitude airspace.In addition to other essential elements,ground infrastructure of vertiports is needed to transition UAM from concept to operation.This study examines the network design of UAM on-demand service,with a particular focus on the use of integer programming and a solution algorithm to determine the optimal locations of vertiports,user allocation to vertiports,and vertiport access-and egress-mode choices while considering the interactions between vertiport locations and potential UAM travel demand.A case study based on simulated disaggregate travel demand data of the Tampa Bay area in Florida,USA was conducted to demonstrate the effectiveness of the proposed model.Candidate vertiport locations were obtained by analyzing a three-dimensional(3D)geographic information system(GIS)map developed from lidar data of Florida and physical and regulation constraints of eVTOL operations at vertiports.Optimal locations of vertiports were determined to achieve the minimal total generalized cost;however,the modeling structure allows each user to select a better mode between ground transportation and UAM in terms of generalized cost.The outcomes of the case study reveal that although the percentage of trips that switched from ground mode to multimodal UAM was small,users choosing the UAM service benefited from significant time saving.In addition,the impact of different parameter settings on the demand for UAM service was explored from the supply side,and different pricing strategies were tested that might influence potential demand and revenue generation for UAM operators.The combined effects of the number of vertiports and pricing strategies were also analyzed.The findings from this study offer in-depth planning and managerial insights for municipal decision-makers and UAM operators.The conclusion of this paper discusses caveats to the study,ongoing efforts by the authors,and future directions in UAM research.展开更多
The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-distu...The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.展开更多
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
基金supported by funding from National Natural Science Foundation of China(Grant Nos.32002074 and 31872135)China Postdoctoral Science Foundation(Grant No.2021M693445)。
文摘The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY21C160001)Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants.
文摘Lagerstroemia L.(Lythraceae)is a widely distributed genus of trees and shrubs native to tropical and subtropical environments from Southeast Asia to Australia,with numerous species highly valued as ornamentals.Although the plastomes of many species in this genus have been sequenced,the rates of functional gene evolution and their effect on phylogenetic analyses have not been thoroughly examined.We compared three plastome sequence matrices to elucidate how differences in these datasets affected phylogenetic analyses.Robust phylogenetic relationships for Lagerstroemia species were reconstructed based on different plastome sequence partitions and multiple phylogenetic methods.Identification of single-nucleotide variants within different genes also provides basic data on the patterns of functional gene evolution in Lagerstroemia and may provide insights into how those mutations affect protein structure and potentially drive divergence via cytonuclear incompatibility.These results as well as analyses of non-synonymous and synonymous mutations,indicate that heterotachic modes of evolution are present in functional plastome genes and should be accounted for in the analyses of molecular evolution.In addition,divergence events within the Lagerstroemia were dated for the first time.Several of the divergence estimates corresponded to well-known Earth history events,such as the reduction in global temperatures at the Eocene/Oligocene boundary.Our analyses conducted in Lagerstroemia here dissects the various patterns in the divergence of Lagerstroemia and may provide a useful guide to help plant breeders,as well as the necessity of using plastomic data and as possible as to combine evidence from morphological characteristics to investigate the complicated interspecies relationship and the evolutionary dynamics of species.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金supported by the Technology Innovation and Application Developnent Key Program of Chongqing(Grant No.CSTC2021jscx-gksb-N0026)the National Natural Science Foundation of China(Grant No.31540016)+1 种基金the Basic Research and Frontier Exploration Projects of Chongqing(Grant No.cstc2018jcyjAX0075)the Subsidy Fund for the Development of National Silk in Chongqing(Grant No.CQ2018JSCE05).
文摘Objective:CAR-T/NK cells have had limited success in the treatment of solid tumors,such as colorectal cancer(CRC),in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response.This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells.Methods:Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines,respectively.Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells(CAR133-i502-NK92).The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release,the RTCA assay,and the degranulation test,as well as measuring tumor bioluminescence signal intensity in mice xenografts.Results:We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation(9.0×10^(4)cells vs.7.0×10^(4)cells)and specific anti-tumor activities in vitro and in a xenogeneic mouse model,and were well-tolerated.Notably,CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells.Furthermore,in hCD133+/hCD133−mixed cancer xenograft models,CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts(n=5,P=0.0297).Greater T-cell infiltration was associated with greater anti-tumor potency(P<0.0001).Conclusions:Armed with a CBLB502 TLR5 agonist,CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner.This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.
基金the research project from“Study of Risk assessment and Countermeasures of Well Drilling and Completion under Ultra-High Temperature and High Pressure”and“Research on Development Feasibility of LS25-1 Gas Field”(Grant Nos.YXKY-ZX-09-2021,2020FS-08).
文摘One of the main obstacles hindering the exploitation of high-temperature and high-pressure oil and gas is the sealing integrity of the cement sheath.Analyzing the microstructure of the cement sheath is therefore an important task.In this study,the microstructure of the cement sheath is determined using a CT scanner under different temperature and pressure conditions.The results suggest that the major cause of micro-cracks in the cement is the increase in the casing pressure.When the micro-cracks accumulate to a certain extent,the overall structure of the cement sheath is weakened,resulting in gas channeling,which poses a direct threat to the safe production of oil and gas.A change in the casing temperature has a limited effect on the microstructure of the cement sheath.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.82150108,31991171,and 81830002 to W.H.,and Grant No.82102892 to C.T.)。
文摘Adoptive cell transfer(ACT)using chimeric antigen receptor(CAR)modified T cells and T cell receptor(TCR)engineered T cells has shown therapeutic efficacy in cancer treatment1,2.CAR T cells are widely applicable to tumor patients because of their ability to directly identify tumor cells in an MHCindependent manner.
基金This research was supported by Nanfan special project,CAAS(grant no.SWAQ06)the Funding of Major Scientific Research Tasks,Kunpeng Institute of Modern Agriculture at Foshan(KIMA-ZDKY2022004)+4 种基金Key R&D Project of Hainan Province(ZDYF2022XDNY254)the Scientific Research Foundation for Principle Investigator,Kunpeng Institute of Modern Agriculture at Foshan(KIMA-QD2022004)the Chinese Academy of Agricultural Sciences Elite Youth Program(110243160001007)to Z.W.,Science Technology and Innovation Commission of Shenzhen Municipality of China(ZDSYS20200811142605017)the National Natural Science Foundation of China(32071786).
文摘Bougainvillea is a perennial ornamental shrub that is highly regarded in ornamental horticulture around the world.However,the absence of genome data limits our understanding of the pathways involved in bract coloration and breeding.Here,we report a chromosome-level assembly of the giga-genome of Bougainvillea×buttiana‘Mrs Butt’,a cultivar thought to be the origin of many other Bougainvillea cultivars.The assembled genome is∼5 Gb with a scaffold N50 of 151756278 bp and contains 86572 genes which have undergone recent whole-genome duplication.We confirmed that multiple rounds of whole-genome multiplication have occurred in the evolutionary history of the Caryophyllales,reconstructed the relationship in the Caryophyllales at whole genome level,and found discordance between species and gene trees as the result of complex introgression events.We investigated betalain and anthocyanin biosynthetic pathways and found instances of independent evolutionary innovations in the nine different Caryophyllales species.To explore the potential formation mechanism of diverse bract colors in Bougainvillea,we analyzed the genes involved in betalain and anthocyanin biosynthesis and found extremely low expression of ANS and DFR genes in all cultivars,which may limit anthocyanin biosynthesis.Our findings indicate that the expression pattern of the betalain biosynthetic pathway did not directly correlate with bract color,and a higher expression level in the betalain biosynthetic pathway is required for colored bracts.This improved understanding of the correlation between gene expression and bract color allows plant breeding outcomes to be predicted with greater certainty.
基金This work is supported by the Academic Research Project of Henan Police College(Grant:HNJY-2021-QN-14 and HNJY202220)the Key Technology R&D Program of Henan Province(Grant:222102210041).
文摘Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological health.To create a clean and positive Internet environment,network enforcement agencies need an automatic and efficient pornographic image recognition tool.Previous studies on pornographic images mainly rely on convolutional neural networks(CNN).Because of CNN’s many parameters,they must rely on a large labeled training dataset,which takes work to build.To reduce the effect of the database on the recognition performance of pornographic images,many researchers view pornographic image recognition as a binary classification task.In actual application,when faced with pornographic images of various features,the performance and recognition accuracy of the network model often decrease.In addition,the pornographic content in images usually lies in several small-sized local regions,which are not a large proportion of the image.CNN,this kind of strong supervised learning method,usually cannot automatically focus on the pornographic area of the image,thus affecting the recognition accuracy of pornographic images.This paper established an image dataset with seven classes by crawling pornographic websites and Baidu Image Library.A weakly supervised pornographic image recognition method based on multiple instance learning(MIL)is proposed.The Squeeze and Extraction(SE)module is introduced in the feature extraction to strengthen the critical information and weaken the influence of non-key and useless information on the result of pornographic image recognition.To meet the requirements of the pooling layer operation in Multiple Instance Learning,we introduced the idea of an attention mechanism to weight and average instances.The experimental results show that the proposed method has better accuracy and F1 scores than other methods.
基金supported by the National Natural Science Foundation of China (Nos. 41210005 and 41776081)the National Oil and Gas Major Project of China (No. 2011ZX05007-001)the Applied Basic Research Program of Qingdao (No. 2016239)
文摘The spatial-temporal relationship between high-quality source rocks and reservoirs is a key factor when evaluating the formation,occurrence,and prospectivity of tight oil and gas reservoirs.In this study,we analyze the fundamental oil and gas accumulation processes occurring in the Songliao Basin,contrasting tight oil sand reservoirs in the south with tight gas sand reservoirs in the north.This is done using geochemical data,constant-rate and conventional mercury injection experiments,and fluid inclusion analyses.Our results demonstrate that as far as fluid mobility is concerned,the expulsion center coincides with the overpressure zone,and its boundary limits the occurrence of tight oil and gas accumulations.In addition,the lower permeability limit of high-quality reservoirs,controlled by pore-throat structures,is 0.1×10^-3μm^2 in the fourth member of the Lower Cretaceous Quantou Formation(K1q^4)in the southern Songliao Basin,and 0.05×10^-3μm^2 in the Lower Cretaceous Shahezi Formation(K1sh)in the northern Songliao Basin.Furthermore,the results indicate that the formation of tight oil and gas reservoirs requires the densification of reservoirs prior to the main phase of hydrocarbon expulsion from the source rocks.Reservoir“sweet spots”develop at the intersection of high-quality source rocks(with high pore pressure)and reservoirs(with high permeability).
基金This work was partly supported by National Natural Science Foundation of China(Grant nos.51975207&51728202)Hunan Provincial Natural Science Foundation for Excellent Young Scholars of China(Grant no.2019JJ30010)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.17B089)the Hunan Provincial Research and Innovation Project for postgraduate(Grant No.CX2018B696).
文摘A novel and effective method to co-extrude metallic alloys is described which named Direct Extrusion and Bending-Shear Deformation.The compound extrusion plates have cracked at 290℃ and 3 mm/s.According to this phenomenon,a model was built to investigate the crack generation and development between the 6061 Al and AZ31 Mg alloy during the compound extrusion process by DEFORM-3D.The cracking behavior of the Mg/Al composite rod with a soft Mg AZ31 core and a hard Al 6061 sleeve were systematically studied to disclose the influence of microstructure on crack in the different regions.The simulation results show that the distribution of strain and velocity has significant differences due to the influence of dies structure and material properties at different locations in the same region.The experimental results show that in the same conditions,there are differences in recrystallization and texture weakening of AZ31 Mg alloys and 6061 Al alloy,which are important factors for the formation of crack.Both the Mg layer and the Al layer have a homogeneous microstructure in the region d.
基金support of the National Natural Science Foundation of China(22038011,51976168)the K.C.Wong Education Foundation,China Postdoctoral Science Foundation(2019M653626)+2 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-06)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20180402)the Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi Province(2018015).
文摘The product distribution and kinetic analysis of low-rank coal vitrinite were investigated during the chemical looping gasification(CLG)process.The acid washing method was used to treat low-rank coal,and the density gradient centrifugation method was adopted to obtain the coal macerals.By combining thermogravimetric analysis and online mass spectrometry,the influence of the heating rate and oxygen carrier(Fe2O3)blending ratio on product distribution was discussed.The macroscopic kinetic parameters were solved by the Kissinger-Akahira-Sunose(KAS)method,and the main gaseous product formation kinetic parameters were solved by the iso-conversion method.The results of vitrinite during slow heating chemical looping gasification showed that the main weight loss interval was 400–600℃,and the solid yield of sample vitrinite-Fe-10 at different heating rates was 64.30%–69.67%.When b=20℃·min^(-1),the maximum decomposition rate of vitrinite-Fe-10 was 0.312%min1.The addition of Fe2O_(3)reduced the maximum decomposition rate,but by comparing the chemical looping conversion characteristic index,it could be inferred that the chemical looping gasification of vitrinite might produce volatile substances higher than the pyrolysis process of vitrinite alone.The average activation energy of the reaction was significantly reduced during chemical looping gasification of vitrinite,which was lower than the average activation energy of 448.69 kJ·mol^(-1) during the pyrolysis process of vitrinite alone.The gaseous products were mainly CO and CO_(2).When the heating rate was 10℃·min^(-1),the highest activation energy for CH4 formation was 21.353 kJ·mol^(-1),and the lowest activation energy for CO formation was 9.7333 kJ·mol^(-1).This study provides basic data for exploring coal chemical looping gasification mechanism and reactor design by studying the chemical looping gasification process of coal macerals。
基金supported by the National Key Basic Research Program of China(Grant No.2013CB429701)the National Natural Science Foundation of China(Grant Nos.41606083,91958210,41606050 and 41210005)+1 种基金AoShan Technological Innovation Projects of National Laboratory for Marine Science and Technology(Qingdao)(2015ASKJ03)National Marine Geological Special Project(DD20190236,DD20190365,DD20190377)。
文摘The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.
基金support of the National Natural Science Foundation of China(22038011,51976168)the K.C.Wong Education Foundation+3 种基金China Postdoctoral Science Foundation(2019M653626)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-06)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20180402)the Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi Province(2018015)。
文摘Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.
基金supported by the National Key R&D Program of China(2016YFC0600603)the Guangxi Science Foundation(2014GXNSFBA118230)the Foundation of Guilin University of Technology(GUTQDJJ2019166)。
文摘A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and tectonic significance.LA-ICP-MS U-Pb zircon dating yielded a 442.7±5.8 Ma age,indicating that the granodiorite porphyry was emplaced during the Llandovery Silurian of the Early Paleozoic.The granodiorite porphyry shares the same geochemical characteristics such as Eu negative anomaly as other syn-tectonic granite plutons in the region,including the granodiorite porphyry in Dawangding and granite porphyries in the Dali Cu-Mo deposit and Longtoushang old deposit,indicating a similar magma evolution process.The Xinping granodiorite porphyry has high contents of SiO2(67.871.8%)and K2O(1.78-3.42%)and is metaluminous-peraluminous with A/CNK ratios ranging from 0.97 to 1.06,indicative of high-potassium calc-alkaline to calc-alkaline affinity.It is a I-type granite enriched in large ion lithophile elements Rb,Sr,while depleted in Ba and high field-strength element Nb.Tectonically,a collision between the Yunkai Block from the south and the Guangxi Yunnan-North Vietnam Block from the north during the Early Paleozoic was followed by uplifting of the Dayaoshan terrane.The Xinping granodiorite porphyry was likely emplaced during the collision.Sr-Nd isotopic analyses show that the granodiorite porphyry has initial 87Sr/86Sr ratios(Isr)of 0.7080-0.7104,εNd(t)range from-0.08 to-4.09,and t2DM between 1.19 and 1.51 Ga,well within the north-east low-value zone of the Cathaysia block,indicating a Paleoproterozoic Cathaysia basement source and an involvement of under plating mantle magma.Field observations,geochronological data,and 3D spatial distribution all lead to the conclusion that the Early Paleozoic Xinping granodiorite porphyry does not have any metallogenic and temporal relationships with the Xinping gold deposit(which has a Jurassic-Early Cretaceous age based on previous studies)but a close metallogenic relation to W-Mo mineralization.
基金supported by the National Natural Science Foundation of China (No. 31971378, 81830002, 31870873 and 31991171)
文摘Immunotherapy has revolutionized cancer treatment and substantially improved patient outcomes with respect to multiple types of tumors.However,most patients cannot benefit from such therapies,mainly due to the intrinsic low immunogenicity of cancer cells(CCs)that allows them to escape recognition by immune cells of the body.Immunogenic cell death(ICD),which is a form of regulated cell death,engages in a complex dialogue between dying CCs and immune cells in the tumor microenvironment(TME),ultimately evoking the damage-associated molecular pattern(DAMP)signals to activate tumor-specific immunity.The ICD inducers mediate the death of CCs and improve both antigenicity and adjuvanticity.At the same time,they reprogram TME with a“cold-warmhot”immune status,ultimately amplifying and sustaining dendritic cell-and T cell-dependent innate sensing as well as the antitumor immune responses.In this review,we discuss how to stimulate ICD based upon the biological properties of CCs that have evolved under diverse stress conditions.Additionally,we highlight how this dynamic interaction contributes to priming tumor immunogenicity,thereby boosting anticancer immune responses.We believe that a deep understanding of these ICD processes will provide a framework for evaluating its vital role in cancer immunotherapy.
文摘After a systematic review of 38 current intelligent city evaluation systems (ICESs) from around the world, this research analyzes the secondary and tertiary indicators of these 38 ICESs from the perspec- tives of scale structuring, approaches and indicator selection, and determines their common base. From this base, the fundamentals of the City Intelligence Quotient (City IOD Evaluation System are developed and five dimensions are selected after a clustering analysis. The basic version, City IQ Evaluation System 1.0, involves 275 experts from 14 high-end research institutions, which include the Chinese Academy of Engineering, the National Academy of Science and Engineering (Germany), the Royal Swedish Academy of Engineering Sciences, the Planning Management Center of the Ministry of Housing and Urban-Rural Development of China, and the Development Research Center of the State Council of China. City IQ Evaluation System 2.0 is further developed, with improvements in its universality, openness, and dy- namic adjustment capability. After employing deviation evaluation methods in the IQ assessment, City IQ Evaluation System 3.0 was conceived. The research team has conducted a repeated assessment of 41 intelligent cities around the world using City IQ Evaluation System 3.0. The results have proved that the City IQ Evaluation System, developed on the basis of intelligent life, features more rational indicators selected from data sources that can offer better universality, openness, and dynamics, and is more sen- sitive and precise.
文摘Urban air mobility(UAM)is an emerging concept proposed in recent years that uses electric vertical takeoff and landing vehicles(eVTOLs).UAM is expected to offer an alternative way of transporting passengers and goods in urban areas with significantly improved mobility by making use of low-altitude airspace.In addition to other essential elements,ground infrastructure of vertiports is needed to transition UAM from concept to operation.This study examines the network design of UAM on-demand service,with a particular focus on the use of integer programming and a solution algorithm to determine the optimal locations of vertiports,user allocation to vertiports,and vertiport access-and egress-mode choices while considering the interactions between vertiport locations and potential UAM travel demand.A case study based on simulated disaggregate travel demand data of the Tampa Bay area in Florida,USA was conducted to demonstrate the effectiveness of the proposed model.Candidate vertiport locations were obtained by analyzing a three-dimensional(3D)geographic information system(GIS)map developed from lidar data of Florida and physical and regulation constraints of eVTOL operations at vertiports.Optimal locations of vertiports were determined to achieve the minimal total generalized cost;however,the modeling structure allows each user to select a better mode between ground transportation and UAM in terms of generalized cost.The outcomes of the case study reveal that although the percentage of trips that switched from ground mode to multimodal UAM was small,users choosing the UAM service benefited from significant time saving.In addition,the impact of different parameter settings on the demand for UAM service was explored from the supply side,and different pricing strategies were tested that might influence potential demand and revenue generation for UAM operators.The combined effects of the number of vertiports and pricing strategies were also analyzed.The findings from this study offer in-depth planning and managerial insights for municipal decision-makers and UAM operators.The conclusion of this paper discusses caveats to the study,ongoing efforts by the authors,and future directions in UAM research.
基金This work is supported by National Natural Science Foundation of China,No.61803203and the Fundamental Research Funds for the Central Universities,No.30918011305.
文摘The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.