期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ultralow-weight loading Ni catalyst supported on two-dimensional vermiculite for carbon monoxide methanation 被引量:3
1
作者 Mengjuan Zhang Panpan Li +5 位作者 Mingyuan Zhu zhiqun tian Jianming Dan Jiangbing Li Bin Dai Feng Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1873-1878,共6页
Nickel-based catalysts represent the most commonly used systems for CO methanation.We have successfully prepared a Ni catalyst system supported on two-dimensional plasma-treated vermiculite(2D-PVMT)with a very low Ni ... Nickel-based catalysts represent the most commonly used systems for CO methanation.We have successfully prepared a Ni catalyst system supported on two-dimensional plasma-treated vermiculite(2D-PVMT)with a very low Ni loading(0.5 wt%).The catalyst precursor was subjected to heat treatment via either conventional heat treatment(CHT)or the plasma irradiation method(PIM).The as-obtained CHT-Ni/PVMT and PIM-Ni/PVMT catalysts were characterized with scanning electron microscopy(SEM),energy dispersive X-ray(EDX),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),inductively coupled plasma-atomic emission spectroscopy(ICP-AES)and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).Additionally,CHT-NiO/PVMT and PIM-NiO/PVMT catalysts were characterized with hydrogen temperature programmed reduction(H_2-TPR).Compared with CHT-Ni/PVMT,PIM-Ni/PVMT exhibited superior catalytic performance.The plasma treated catalyst PIM-Ni/PVMT achieved a CO conversion of93.5%and a turnover frequency(TOF)of 0.8537 s^(-1),at a temperature of 450°C,a gas hourly space velocity of 6000 ml·g^(-1)·h^(-1),a synthesis gas flow rate of 65 ml·min^(-1),and a pressure of 1.5 MPa.Plasma irradiation may provide a successful strategy for the preparation of catalysts with very low metal loadings which exhibit excellent properties. 展开更多
关键词 催化剂系统 Ni 装载 蛭石 二维 氧化物 扫描电子显微镜 重量
下载PDF
Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution 被引量:1
2
作者 Fulong Wang Huaguang Yu +2 位作者 zhiqun tian Huaiguo Xue Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期395-403,共9页
Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of ac... Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system. 展开更多
关键词 铈氧化物 接口设计 催化性能 地点 白酒 氧化物系统 电子显微镜
下载PDF
Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method 被引量:4
3
作者 Libing Hu Feng Yu +7 位作者 Huifang Yuan Gang Wang Mincong Liu Lina Wang Xueyan Xue Banghua Peng zhiqun tian Bin Dai 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第3期624-629,共6页
High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via... High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via a facile sand-bath method(SBM), i.e., Co-CoOx/N-C(SBM). The as-obtained Co-CoOx/N-C(SBM) exhibited overwhelming superiorities to Co-CoO/N-C prepared by conventional heat treatment(CHT), particularly in electrochemical performance of ORR. Although Co-CoOx/N-C(SBM)showed smaller specific surface area of 276.8 m^2/g than that of 939.5 m^2/g from Co-CoO/N-C(CHT), the Co-CoOx/N-C(SBM) performed larger pore diameter and more Co_3O_4 active component resulting in better ORR performance in 0.1 mol/L KOH solution. The Co-CoO_x/N-C(SBM) delivered onset potential of 0.91 V vs. RHE, mid-wave potential of 0.85 V vs. RHE and limited current density of 5.46 mA/cm^2 much better than those of the Co-CoO/N-C(CHT). Furthermore, Co-CoOx/N-C(SBM) showed greater stability and better methanol tolerance superior to the commercial 20 wt% Pt/C. 展开更多
关键词 Oxygen reduction reaction Fuel cell ELECTROCATALYST Cobalt oxide Energy conversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部