期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Review of Nano/Micro/Milli Needles Fabrications for Biomedical Engineering
1
作者 Bin Liu Xin Yi +6 位作者 Ying Zheng zhishan yuan Jingbo Yang Jian Yang Xiao Yu Lelun Jiang Chengyong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期51-79,共29页
Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating h... Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling,biosensing,drug delivery,surgery,and other such applications.In this review,we provide an overview of multiscale needle fabrication techniques and their biomedical applications.Needles are classified as nanoneedles,microneedles and millineedles based on the needle diameter,and their fabrication techniques are highlighted.Nanoneedles bridge the inside and outside of cells,achieving intracellular electrical recording,biochemical sensing,and drug delivery.Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system.Millineedles,including puncture,syringe,acupuncture and suture needles,are presented.Finally,conclusions and future perspectives for next-generation nano/micro/milli needles are discussed. 展开更多
关键词 NANONEEDLES MICRONEEDLES Millineedles Fabrication methods Biomedical Engineering
下载PDF
Wafer-level site-controlled growth of silicon nanowires by Cu pattern dewetting
2
作者 zhishan yuan Yunfei Chen +3 位作者 Zhonghua Ni Yuelin Wang Hong Yi Tie Li 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2646-2653,共8页
An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the hel... An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate, α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area. 展开更多
关键词 amorphous silicon nanowires (α-SiNWs) wafer-leve Cu pattern DEWETTING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部