Earthquake rupture process generally involves several faults activities instead of a single fault A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimens...Earthquake rupture process generally involves several faults activities instead of a single fault A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimensional structure of involved faults in earthquake if the aftershocks around the active fault planes distribute uniformly. When seismic events are given, the optimal faults structures can be determined by our new method. Each of sub-fault planes is fully characterized by its central location, length, width, strike and dip. The resolution determines the number of fault segments needed to describe the earthquake catalog. The higher the resolution, the finer the structure of the reconstructed fault segments. The new method successfully reconstructs the fault segments using synthetic earthquake catalogs. By taking the 28 June 1992 Landers earthquake oceured in southern California as an example, the reconstructed fault segments are consistent with the faults already known on geological maps or blind faults that appeared quite frequently in longer-term catalogs.展开更多
Two-dimensional(2D)indium arsenide(InAs)is promising for future electronic and optoelectronic applications such as highperformance nanoscale transistors,flexible and wearable devices,and high-sensitivity broadband pho...Two-dimensional(2D)indium arsenide(InAs)is promising for future electronic and optoelectronic applications such as highperformance nanoscale transistors,flexible and wearable devices,and high-sensitivity broadband photodetectors,and is advantageous for its heterogeneous integration with Si-based electronics.However,the synthesis of 2D InAs single crystals is challenging because of the nonlayered structure.Here we report the van der Waals epitaxy of 2D InAs single crystals,with their thickness down to 4.8 nm,and their lateral sizes up to~37μm.The as-grown InAs flakes have high crystalline quality and are homogenous.The thickness can be tuned by growth time and temperature.Moreover,we explore the thickness-dependent optical properties of InAs flakes.Transports measurement reveals that 2D InAs possesses high conductivity and high carrier mobility.Our work introduces InAs to 2D materials family and paves the way for applying 2D InAs in high-performance electronics and optoelectronics.展开更多
基金the financial support of the Teachers Scientific and Research Fund of China Earthquake Administration (20090126)the Natural Science Fund of Hebei Province (A2011408006)the Fundamental Research Funds for the Central Universities (ZY20110101)
文摘Earthquake rupture process generally involves several faults activities instead of a single fault A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimensional structure of involved faults in earthquake if the aftershocks around the active fault planes distribute uniformly. When seismic events are given, the optimal faults structures can be determined by our new method. Each of sub-fault planes is fully characterized by its central location, length, width, strike and dip. The resolution determines the number of fault segments needed to describe the earthquake catalog. The higher the resolution, the finer the structure of the reconstructed fault segments. The new method successfully reconstructs the fault segments using synthetic earthquake catalogs. By taking the 28 June 1992 Landers earthquake oceured in southern California as an example, the reconstructed fault segments are consistent with the faults already known on geological maps or blind faults that appeared quite frequently in longer-term catalogs.
基金supported by the National Key Basic Research Program of China(No.2021YFA1401400)the start-up funds of Shanghai Jiao Tong University,the National Natural Science Foundation of China(Nos.52103344,52031014,22022507,and 51973111)+1 种基金the National Key Research and Development Program of China(No.2017YFA0206301)Beijing National Laboratory for Molecular Sciences(No.BNLMS202004).
文摘Two-dimensional(2D)indium arsenide(InAs)is promising for future electronic and optoelectronic applications such as highperformance nanoscale transistors,flexible and wearable devices,and high-sensitivity broadband photodetectors,and is advantageous for its heterogeneous integration with Si-based electronics.However,the synthesis of 2D InAs single crystals is challenging because of the nonlayered structure.Here we report the van der Waals epitaxy of 2D InAs single crystals,with their thickness down to 4.8 nm,and their lateral sizes up to~37μm.The as-grown InAs flakes have high crystalline quality and are homogenous.The thickness can be tuned by growth time and temperature.Moreover,we explore the thickness-dependent optical properties of InAs flakes.Transports measurement reveals that 2D InAs possesses high conductivity and high carrier mobility.Our work introduces InAs to 2D materials family and paves the way for applying 2D InAs in high-performance electronics and optoelectronics.