The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herei...The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.展开更多
Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct...Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.展开更多
This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in t...This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in the amino acid level, and design a procedure to select negative training set for dealing with the training dataset imbalance problem, i.e., the number of interacting protein pairs is scarce relative to large scale non-interacting protein pairs. The proposed methods are validated on PPIs data of Plasmodium falciparum and Escherichia coli, and yields the predictive accuracy of 93.8% and 95.3%, respectively. The functional annotation analysis and database search indicate that our novel predictions are worthy of future experimental validation. The new methods will be useful supplementary tools for the future proteomics studies.展开更多
基金Supported by the National Natural Science Foundation of China(No.62033011)Science and Technology Project of Hebei Province(No.216Z1704G,No.20310401D)。
文摘The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals underwater,necessitating the filtration of underwater acoustic noise.Herein,an underwater acoustic signal denoising method based on ensemble empirical mode decomposition(EEMD),correlation coefficient(CC),permutation entropy(PE),and wavelet threshold denoising(WTD)is proposed.Furthermore,simulation experiments are conducted using simulated and real underwater acoustic data.The experimental results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio,root mean square error,and CC.The proposed method eliminates noise and retains valuable information in the signal.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82001539 to Leilei Gao)the Zhejiang Province Health Innovation Talent Project(Grant No.2021RC001 to Zhen Jin)+1 种基金the General Program of the National Natural Science Foundation of China(Grant No.31671561 to Dong Zhang)the Regional Program of National Natural Science Foundation of China(Grant No.82260126 to Xiaocong Liu).
文摘Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
基金This research is supported by the Key Project of the National Natural Science Foundation of China under Grant No. 10631070, the National Natural Science Foundation of China under Grant Nos. 10801112, 10971223, 11071252, and the Ph.D Graduate Start Research Foundation of Xinjiang University Funded Project under Grant No. BS080101. Thank Dr. Yong Wang from Institute of Systems Science, Academy of Mathematics and Systems Science for kind discussion and good suggestions.
文摘This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in the amino acid level, and design a procedure to select negative training set for dealing with the training dataset imbalance problem, i.e., the number of interacting protein pairs is scarce relative to large scale non-interacting protein pairs. The proposed methods are validated on PPIs data of Plasmodium falciparum and Escherichia coli, and yields the predictive accuracy of 93.8% and 95.3%, respectively. The functional annotation analysis and database search indicate that our novel predictions are worthy of future experimental validation. The new methods will be useful supplementary tools for the future proteomics studies.