The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines...The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines the annual change characteristics of monthly runoff of the Shiyang River Basin,Heihe River Basin,and Shule River Basin in the Hexi Corridor,Northwest China.Many indexes are used and analyzed,including the coefficient of variance,the complete regulation coefficient,the concentration degree and concentration period,the magnitude of change,the skewness coefficient,and the kurtosis coefficient of the annual distribution curves.The results reveal the following:(1)The inhomogeneity of annual runoff distribution in the Taolai River and the rivers to the west of it,except the Shiyou River,show an increasing trend.Conversely,the inhomogeneity of the rivers to the east of the Taolai River generally show a downward trend,but the coefficient of variance value is still very high.(2)In the Shiyang River Basin,the annual distribution of the concentration period is characterized by a relatively discrete pattern.Conversely,the Heihe River Basin exhibits a relatively concentrated pattern,and the distribution pattern of the Shule River Basin is quite different.Notably,all concentration periods in the three basins have shifted backward after the 2000s.(3)The Shiyang River Basin exhibits disordered annual distribution curves of runoff in different years.In contrast,the Heihe River Basin presents a typical‘single-peak’pattern with a prominent right-skewed.The Shule River Basin has regular distribution curves,with a gradually significant‘double-peak’pattern from east to west.Overall,there has been a slight change in runoff in the Shiyang River Basin,while the Heihe River Basin and Shule River Basin have experienced significant increases in runoff.The annual distribution curves of runoff in the Liyuan River and the rivers to the east of it exhibit a gentle peak pattern,and the appearance probability of extreme runoff during the year is low.Conversely,the rivers to the west of the Liyuan River,excluding the Danghe River,display a sharp peak and thick tail pattern,indicating that the appearance probability of extreme runoff during the year is high.These findings have practical implications for the planning and management of water resources in the Hexi Corridor.Moreover,they provide a solid foundation for predicting future changes in regional water resources.展开更多
Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle pa...Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle parts of the Heihe River watershed, northwestern China. Facing with the huge water shortage, people exploited ground- water at a large scale in recent years. The reducing recharge from surface water and over-exploitation of ground- water led to the decline of groundwater levels and threatened the sustainability of water resources. This study con- structed a conceptual and numerical groundwater flow model and calibrated the model based on the observed wells A solute transport model was built using MT3DMS to calculate the groundwater age distribution in the Zhangye Basin. The simulated result shows that the youngest groundwater is distributed near the most upstream areas in the model domain, which is less than 1,000 a, older groundwater is distributed in deeper parts of the aquifer and near the discharge outlets, ranging from 6,000 a to over 20,000 a. Spatial variation of groundwater ages in the middle area indicates the recharge diversity between unconfined and confined aquifer. Groundwater age can serve as an indicator to evaluate groundwater's renewal capacity and sustainability. The formation of groundwater resources in the lower stream area would spend 10,000 a or even more than 20,000 a, so exploitation of groundwater in these areas should be restrained.展开更多
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the ...The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.展开更多
As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes ...As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes its“Janus nature”strictly regulated by its concentration.Abnormal regulation of calcium signals may cause some diseases;however,artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role.“Calcium overload,”for example,is characterized by excessive enrichment of intracellular Ca^(2+),which irreversibly switches calcium signaling from“positive regulation”to“reverse destruction,”leading to cell death.However,this undesirable death could be defined as“calcicoptosis”to offer a novel approach for cancer treatment.Indeed,Ca^(2+)is involved in various cancer diagnostic and therapeutic events,including calcium overload-induced calcium homeostasis disorder,calcium channels dysregulation,mitochondrial dysfunction,calcium-associated immunoregulation,cell/vascular/tumor calcification,and calcification-mediated CT imaging.In paral-lel,the development of multifunctional calcium-based nanomaterials(e.g.,calcium phosphate,calcium carbonate,calcium peroxide,and hydroxyapatite)is becoming abundantly available.This review will highlight the latest insights of the calcium-based nanomaterials,explain their application,and provide novel perspective.Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.展开更多
Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes o...Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes of the runoff and quantitatively reveal its main driving factors. This paper aims to discover the variation heterogeneity of runoff and the impacts of climatic factors on this runoff in the source region of the Yellow River(SRYR) in China from 1961 to 2016. We divided SRYR into four sub-regions, and analyzed changes of their contributions to total runoff in SRYR. We also revealed the impacts of precipitation, temperature and potential evapotranspiration on runoff in each sub-region by constructing the regression relationships between them at multiple temporal scales. The changes of runoff in the four sub-regions and their contributions to the total runoff were not exactly consistent. The climatic variables’ changes also have heterogeneity, and runoff was mainly affected by precipitation compared to influences of temperature or potential evapotranspiration. Their impacts on runoff have spatiotemporal heterogeneity and can be reflected by very significant-linear regression equations.It provided a simple method to predict headwater runoff for better water management in the whole basin.展开更多
Developing an effective approach to rapidly assess the effects of restoration projects on soil erosion intensity and theirextensive spatial and temporal dynamics is important for regional ecosystem management and the ...Developing an effective approach to rapidly assess the effects of restoration projects on soil erosion intensity and theirextensive spatial and temporal dynamics is important for regional ecosystem management and the development of soilconservation strategies in the future. This study applied a model that was developed at the pixel scale using water soilerosion indicators (land use, vegetation coverage and slope) to assess the soil erosion intensity in the Loess Plateau,China. Landsat TM/ETM+ images in 2000, 2005 and 2010 were used to produce land use maps based on the object-oriented classification method. The MODIS product MOD13Q1 was adopted to derive the vegetation coveragemaps. The slope gradient maps were calculated based on data from the digital elevation model. The area of watersoil-eroded land was classified into six grades by integrating slope gradients, land use and vegetation coverage. Resultsshow that the Grain-To-Green Project in the Loess Plateau worked based on the land use changes from 2000 to 2010and enhanced vegetation restoration and ecological conservation. These projects effectively prevented soil erosion.During this period, lands with moderate, severe, more severe and extremely severe soil erosion intensities significantlydecreased and changed into less severe levels, respectively. Lands with slight and light soil erosion intensities increased.However, the total soil-eroded area in the Loess Plateau was reduced. The contributions of the seven provincesto the total soil-eroded area in the Loess Plateau and the composition of the soil erosion intensity level in eachprovince are different. Lands with severe, more severe and extremely severe soil erosion intensities are mainly distributedin Qinghai, Ningxia, Gansu and Inner Mongolia. These areas, although relatively small, must be prioritised andpreferentially treated.展开更多
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses;however, the molecular mechanism involved in this induction is largely unknown.Here, we...Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses;however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class Ⅱ hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.展开更多
This study reports a strain of Trichoderma harzianum CCTCC-SBW0162 with potential to enhance biocontrol activity against gray mold pathogen, Botrytis cinerea, and with a pivotal role in tomato(Solanum esculentum) plan...This study reports a strain of Trichoderma harzianum CCTCC-SBW0162 with potential to enhance biocontrol activity against gray mold pathogen, Botrytis cinerea, and with a pivotal role in tomato(Solanum esculentum) plant growth enhancement. A total of 254 Trichoderma isolates were screened by in vitro antagonistic assay. Of these, 10 were selected for greenhouse experiments based on their greater inhibition of B. cinerea.The in vitro antagonistic assay and greenhouse experiments indicated that T. harzianum CCTCC-SBW0162 gave the highest inhibition rate(90.6%) and disease reduction(80.7%). Also, to study the possible mechanism associated with antifungal activity of CCTCC-SBW0162 against B. cinerea, molecular docking was used to assess the interactions between CCTCC-SBW0162-derived metabolites, and pathogencity and virulence related proteins of B. cinerea. The molecular docking results indicated that the combination of harzianopyridone,harzianolide and anthraquinone C derived from CCTCCSBW0162 could synergistically improve antifungal activity against B. cinerea through the inhibition/modification of pathogenicity and virulence related proteins.However, this computerized modeling work emphasized the need for further study in the laboratory to confirm the effect T. harzianum-derived metabolites against the proteins of B. cinerea and their interactions.展开更多
Minimally invasive interventional embolization has tremendous advantages over conventional surgery in the treatment of vascular diseases and malignant tumors.Particularly,liquid embolic agents have garnered much atten...Minimally invasive interventional embolization has tremendous advantages over conventional surgery in the treatment of vascular diseases and malignant tumors.Particularly,liquid embolic agents have garnered much attention owing to their properties of deep vascular penetration and full occlusion of vasculature independent of thrombus formation,which relies on the patient’s coagulation system.Despite their drawbacks,traditional liquid embolic agents,such as lipiodol,N-butyl-2-cyanoacrylate,and Onyx,have benefited numerous patients.The original liquid embolic agents have been modified and optimized,and novel liquid embolic agents have also been developed using different strategies and mechanisms.This minireview provides a brief overview of liquid embolic agents,including approved and potential ones.Challenges,prospects,and rational design guidelines are also discussed.This review may spark interest in liquid embolic agents and open new avenues for the smart design of improved embolic agents in the development of personalized and precision medicine.展开更多
基金This research was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0720200)the Gansu Provincial Science and Technology Planning Project(23ZDFA018)+4 种基金the National Key R&D Program of China(Project No.2022YFF1303301)the“Light of West China”Program of CAS(Project Nos.xbzglzb202020,23JR6KA008)Science and technology project of Gansu Province(Project No.21JR7RA046)the Natural Science Foundation of China(Project No.52179026)the Open Foundation of State Key Laboratory of Computer Science(Project No.SKLCS 2020–05).
文摘The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines the annual change characteristics of monthly runoff of the Shiyang River Basin,Heihe River Basin,and Shule River Basin in the Hexi Corridor,Northwest China.Many indexes are used and analyzed,including the coefficient of variance,the complete regulation coefficient,the concentration degree and concentration period,the magnitude of change,the skewness coefficient,and the kurtosis coefficient of the annual distribution curves.The results reveal the following:(1)The inhomogeneity of annual runoff distribution in the Taolai River and the rivers to the west of it,except the Shiyou River,show an increasing trend.Conversely,the inhomogeneity of the rivers to the east of the Taolai River generally show a downward trend,but the coefficient of variance value is still very high.(2)In the Shiyang River Basin,the annual distribution of the concentration period is characterized by a relatively discrete pattern.Conversely,the Heihe River Basin exhibits a relatively concentrated pattern,and the distribution pattern of the Shule River Basin is quite different.Notably,all concentration periods in the three basins have shifted backward after the 2000s.(3)The Shiyang River Basin exhibits disordered annual distribution curves of runoff in different years.In contrast,the Heihe River Basin presents a typical‘single-peak’pattern with a prominent right-skewed.The Shule River Basin has regular distribution curves,with a gradually significant‘double-peak’pattern from east to west.Overall,there has been a slight change in runoff in the Shiyang River Basin,while the Heihe River Basin and Shule River Basin have experienced significant increases in runoff.The annual distribution curves of runoff in the Liyuan River and the rivers to the east of it exhibit a gentle peak pattern,and the appearance probability of extreme runoff during the year is low.Conversely,the rivers to the west of the Liyuan River,excluding the Danghe River,display a sharp peak and thick tail pattern,indicating that the appearance probability of extreme runoff during the year is high.These findings have practical implications for the planning and management of water resources in the Hexi Corridor.Moreover,they provide a solid foundation for predicting future changes in regional water resources.
基金financially supported by the National Natural Science Foundation of China (91225301)
文摘Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle parts of the Heihe River watershed, northwestern China. Facing with the huge water shortage, people exploited ground- water at a large scale in recent years. The reducing recharge from surface water and over-exploitation of ground- water led to the decline of groundwater levels and threatened the sustainability of water resources. This study con- structed a conceptual and numerical groundwater flow model and calibrated the model based on the observed wells A solute transport model was built using MT3DMS to calculate the groundwater age distribution in the Zhangye Basin. The simulated result shows that the youngest groundwater is distributed near the most upstream areas in the model domain, which is less than 1,000 a, older groundwater is distributed in deeper parts of the aquifer and near the discharge outlets, ranging from 6,000 a to over 20,000 a. Spatial variation of groundwater ages in the middle area indicates the recharge diversity between unconfined and confined aquifer. Groundwater age can serve as an indicator to evaluate groundwater's renewal capacity and sustainability. The formation of groundwater resources in the lower stream area would spend 10,000 a or even more than 20,000 a, so exploitation of groundwater in these areas should be restrained.
基金supported by the National Natural Science Foundation of China(41240002,91125025,91225302,Y211121001)the National Science and Technology Support Projects(2011BAC07B05)
文摘The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.
基金supported by the Major State Basic Research Development Program of China(No.2017YFA0205201)China Postdoctoral Science Foundation Funded Project(2021M702743)the National Natural Science Foundation of China(NSFC,Nos.81925019,32101113,and U1705281).
文摘As the indispensable second cellular messenger,calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins.The importance of calcium ions(Ca^(2+))makes its“Janus nature”strictly regulated by its concentration.Abnormal regulation of calcium signals may cause some diseases;however,artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role.“Calcium overload,”for example,is characterized by excessive enrichment of intracellular Ca^(2+),which irreversibly switches calcium signaling from“positive regulation”to“reverse destruction,”leading to cell death.However,this undesirable death could be defined as“calcicoptosis”to offer a novel approach for cancer treatment.Indeed,Ca^(2+)is involved in various cancer diagnostic and therapeutic events,including calcium overload-induced calcium homeostasis disorder,calcium channels dysregulation,mitochondrial dysfunction,calcium-associated immunoregulation,cell/vascular/tumor calcification,and calcification-mediated CT imaging.In paral-lel,the development of multifunctional calcium-based nanomaterials(e.g.,calcium phosphate,calcium carbonate,calcium peroxide,and hydroxyapatite)is becoming abundantly available.This review will highlight the latest insights of the calcium-based nanomaterials,explain their application,and provide novel perspective.Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(Project No.Y82CG11001)the National Key Research and Development Program(Project No.2017YFC0404305)+2 种基金"Light of West China"Program of CAS(Project No.29Y729861)International Postdoctoral Exchange Fellowship Program(Project No.20160092)the State Power Investment Corporation Science and Technology Project(Project No.2016-004-HHS-KJ-X).
文摘Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes of the runoff and quantitatively reveal its main driving factors. This paper aims to discover the variation heterogeneity of runoff and the impacts of climatic factors on this runoff in the source region of the Yellow River(SRYR) in China from 1961 to 2016. We divided SRYR into four sub-regions, and analyzed changes of their contributions to total runoff in SRYR. We also revealed the impacts of precipitation, temperature and potential evapotranspiration on runoff in each sub-region by constructing the regression relationships between them at multiple temporal scales. The changes of runoff in the four sub-regions and their contributions to the total runoff were not exactly consistent. The climatic variables’ changes also have heterogeneity, and runoff was mainly affected by precipitation compared to influences of temperature or potential evapotranspiration. Their impacts on runoff have spatiotemporal heterogeneity and can be reflected by very significant-linear regression equations.It provided a simple method to predict headwater runoff for better water management in the whole basin.
基金supported by the Key Program of the Chinese Academy of Sciences (KZZD-EW-04-04)the Chinese Science Academy STS Program: Construction of information platform of field and remote sensing data in northwestern China (KFJ-EW-STS-006)
文摘Developing an effective approach to rapidly assess the effects of restoration projects on soil erosion intensity and theirextensive spatial and temporal dynamics is important for regional ecosystem management and the development of soilconservation strategies in the future. This study applied a model that was developed at the pixel scale using water soilerosion indicators (land use, vegetation coverage and slope) to assess the soil erosion intensity in the Loess Plateau,China. Landsat TM/ETM+ images in 2000, 2005 and 2010 were used to produce land use maps based on the object-oriented classification method. The MODIS product MOD13Q1 was adopted to derive the vegetation coveragemaps. The slope gradient maps were calculated based on data from the digital elevation model. The area of watersoil-eroded land was classified into six grades by integrating slope gradients, land use and vegetation coverage. Resultsshow that the Grain-To-Green Project in the Loess Plateau worked based on the land use changes from 2000 to 2010and enhanced vegetation restoration and ecological conservation. These projects effectively prevented soil erosion.During this period, lands with moderate, severe, more severe and extremely severe soil erosion intensities significantlydecreased and changed into less severe levels, respectively. Lands with slight and light soil erosion intensities increased.However, the total soil-eroded area in the Loess Plateau was reduced. The contributions of the seven provincesto the total soil-eroded area in the Loess Plateau and the composition of the soil erosion intensity level in eachprovince are different. Lands with severe, more severe and extremely severe soil erosion intensities are mainly distributedin Qinghai, Ningxia, Gansu and Inner Mongolia. These areas, although relatively small, must be prioritised andpreferentially treated.
基金supported by the grant from National Key Projects of I Intergovernmental Cooperation in Scientific and Technological Innovation(2017YFE 0104900)the National Natural Science Foundation of China(31872015,31672072)+2 种基金National Key Research and Development Program of China(2017YFD0200901)Agriculture Research System of Shanghai(Grant No.201710)China Agriculture Research System Project(CARS-02)。
文摘Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses;however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class Ⅱ hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.
基金supported by the National Key Research and Development Program of China (2017YFD0200400, 2017YFD0201108, SQ2017ZY06102)the National Natural Science Foundation of China (20090073110048)+1 种基金the National Modern Agriculture Industry Technique Systems (CARS-02)Special Project of Basic Work Project for Science and Technology (2014FY120900)
文摘This study reports a strain of Trichoderma harzianum CCTCC-SBW0162 with potential to enhance biocontrol activity against gray mold pathogen, Botrytis cinerea, and with a pivotal role in tomato(Solanum esculentum) plant growth enhancement. A total of 254 Trichoderma isolates were screened by in vitro antagonistic assay. Of these, 10 were selected for greenhouse experiments based on their greater inhibition of B. cinerea.The in vitro antagonistic assay and greenhouse experiments indicated that T. harzianum CCTCC-SBW0162 gave the highest inhibition rate(90.6%) and disease reduction(80.7%). Also, to study the possible mechanism associated with antifungal activity of CCTCC-SBW0162 against B. cinerea, molecular docking was used to assess the interactions between CCTCC-SBW0162-derived metabolites, and pathogencity and virulence related proteins of B. cinerea. The molecular docking results indicated that the combination of harzianopyridone,harzianolide and anthraquinone C derived from CCTCCSBW0162 could synergistically improve antifungal activity against B. cinerea through the inhibition/modification of pathogenicity and virulence related proteins.However, this computerized modeling work emphasized the need for further study in the laboratory to confirm the effect T. harzianum-derived metabolites against the proteins of B. cinerea and their interactions.
基金Y.J.,Y.Z.,and Z.L.contributed equally to this work.This work was supported by the Major State Basic Research Development Program of China[2017YFA0205201]the National Natural Science Foundation of China(NSFC)[81925019 and U1705281]+1 种基金the Fundamental Research Funds for the Central Universities[20720190088 and 20720200019]and the Program for New Century Excellent Talents in University,China[NCET-13-0502].
文摘Minimally invasive interventional embolization has tremendous advantages over conventional surgery in the treatment of vascular diseases and malignant tumors.Particularly,liquid embolic agents have garnered much attention owing to their properties of deep vascular penetration and full occlusion of vasculature independent of thrombus formation,which relies on the patient’s coagulation system.Despite their drawbacks,traditional liquid embolic agents,such as lipiodol,N-butyl-2-cyanoacrylate,and Onyx,have benefited numerous patients.The original liquid embolic agents have been modified and optimized,and novel liquid embolic agents have also been developed using different strategies and mechanisms.This minireview provides a brief overview of liquid embolic agents,including approved and potential ones.Challenges,prospects,and rational design guidelines are also discussed.This review may spark interest in liquid embolic agents and open new avenues for the smart design of improved embolic agents in the development of personalized and precision medicine.