Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-...Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials,the products are often random and difficult to predict without theoretical inputs.In this study,the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus(BP)monolayer by using an improved first-principles molecular dynamics method.The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV,which ultimately induces the formation of a zigzag-like chain vacancy.The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP.Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy,exhibiting rich electronic properties.This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.展开更多
We carry out ab initio density functional theory calculations to study manipulation of electronic structures of selfassembled molecular nanostructures on metal surfaces by investigating the geometric and electronic pr...We carry out ab initio density functional theory calculations to study manipulation of electronic structures of selfassembled molecular nanostructures on metal surfaces by investigating the geometric and electronic properties of glycine molecules on Cu(100).It is shown that a glycine monolayer on Cu(100)forms a two-dimensional hydrogen-bonding network between the carboxyl and amino groups of glycine using a first principles atomistic calculation on the basis of a recently found structure.This network includes at least two hydrogen-bonding chains oriented roughly perpendicular to each other.Through molecule–metal electronic hybridization,these two chains selectively hybridized with the two isotropic degenerate Cu(100)surface states,leading to two anisotropic quasi-one-dimensional surface states.Electrons occupying these two states can near-freely move from a molecule to its adjacent molecules directly through the intermolecular hydrogen bonds,rather than mediated by the substrate.This results in the experimentally observed anisotropic free-electron-like behavior.Our results suggest that hydrogen-bonding chains are likely candidates for charge conductors.展开更多
With the unique properties,layered transition metal dichalcogenide(TMD)and its heterostructures exhibit great potential for applications in electronics.The electrical performance,e.g.,contact barrier and resistance to...With the unique properties,layered transition metal dichalcogenide(TMD)and its heterostructures exhibit great potential for applications in electronics.The electrical performance,e.g.,contact barrier and resistance to electrodes,of TMD heterostructure devices can be significantly tailored by employing the functional layers,called interlayer engineering.At the interface between different TMD layers,the dangling-bond states normally exist and act as traps against charge carrier flow.In this study,we propose a technique to suppress such carrier trap that uses enhanced interlayer hybridization to saturate dangling-bond states,as demonstrated in a strongly interlayer-coupled monolayer-bilayer PtSe2 heterostructure.The hybridization between the unsaturated states and the interlayer electronic states of PtSe2 significantly reduces the depth of carrier traps at the interface,as corroborated by our scanning tunnelling spectroscopic measurements and density functional theory calculations.The suppressed interfacial trap demonstrates that interlayer saturation may offer an efficient way to relay the charge flow at the interface of TMD heterostructures.Thus,this technique provides an effective way for optimizing the interface contact,the crucial issue exists in two-dimensional electronic community.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11622437,61674171,11804247,and 11974422)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)+1 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences(B.L,W.Z.)the Fundamental Research Funds for the Central Universities,China,and the Research Funds of Renmin University of China[Grant Nos.16XNLQ01 and No.19XNQ025(W.J.)].
文摘Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional(2D)materials.Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials,the products are often random and difficult to predict without theoretical inputs.In this study,the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus(BP)monolayer by using an improved first-principles molecular dynamics method.The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV,which ultimately induces the formation of a zigzag-like chain vacancy.The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP.Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy,exhibiting rich electronic properties.This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11622437,11804247,61674171,and 11974422)the Fundamental Research Funds for the Central Universities of China+1 种基金the Research Funds of Renmin University of China(Grant Nos.19XNQ025 and 19XNH066)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)。
文摘We carry out ab initio density functional theory calculations to study manipulation of electronic structures of selfassembled molecular nanostructures on metal surfaces by investigating the geometric and electronic properties of glycine molecules on Cu(100).It is shown that a glycine monolayer on Cu(100)forms a two-dimensional hydrogen-bonding network between the carboxyl and amino groups of glycine using a first principles atomistic calculation on the basis of a recently found structure.This network includes at least two hydrogen-bonding chains oriented roughly perpendicular to each other.Through molecule–metal electronic hybridization,these two chains selectively hybridized with the two isotropic degenerate Cu(100)surface states,leading to two anisotropic quasi-one-dimensional surface states.Electrons occupying these two states can near-freely move from a molecule to its adjacent molecules directly through the intermolecular hydrogen bonds,rather than mediated by the substrate.This results in the experimentally observed anisotropic free-electron-like behavior.Our results suggest that hydrogen-bonding chains are likely candidates for charge conductors.
基金We acknowledged the financial support from the Beijing Natural Science Foundation(Nos.Z190006 and 4192054)the National Natural Science Foundation of China(Nos.61725107,11622437,61674171,11974422,61761166009,and 61888102)+3 种基金the National Key Research&Development Projects of China(Nos.2016YFA0202301,2019YFA0308000,and 2018YFE0202700)the Fundamental Research Funds for the Central Universities,China and the Research Funds of Renmin University of China(Nos.16XNLQ01 and 19XNQ025)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB30000000 and XDB28000000)Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China and Shanghai Supercomputer Center.
文摘With the unique properties,layered transition metal dichalcogenide(TMD)and its heterostructures exhibit great potential for applications in electronics.The electrical performance,e.g.,contact barrier and resistance to electrodes,of TMD heterostructure devices can be significantly tailored by employing the functional layers,called interlayer engineering.At the interface between different TMD layers,the dangling-bond states normally exist and act as traps against charge carrier flow.In this study,we propose a technique to suppress such carrier trap that uses enhanced interlayer hybridization to saturate dangling-bond states,as demonstrated in a strongly interlayer-coupled monolayer-bilayer PtSe2 heterostructure.The hybridization between the unsaturated states and the interlayer electronic states of PtSe2 significantly reduces the depth of carrier traps at the interface,as corroborated by our scanning tunnelling spectroscopic measurements and density functional theory calculations.The suppressed interfacial trap demonstrates that interlayer saturation may offer an efficient way to relay the charge flow at the interface of TMD heterostructures.Thus,this technique provides an effective way for optimizing the interface contact,the crucial issue exists in two-dimensional electronic community.