Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flower...Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flowering.mi R171 b-overexpressing rice plants(OX171 b)displayed increased rice blast resistance accompanied with enhanced defense responses and late heading,whereas blocking mi R171 b expression in rice(MIM171)led to greater susceptibility to blast disease,associated with compromised defense responses and early heading.Either overexpressing or silencing of mi R171 b significantly affected plant height and number of filled seeds per panicle(seed-setting rate),resulting in decreased grain yield.mi R171 b targets SCL6-IIa,SCL6-IIb,and SCL6-IIc,whose expression was suppressed in OX171 b but increased in MIM171.Mutants of SCL6-IIa,SCL6-IIb,and SCL6-IIc all displayed phenotypes like that of OX171 b,including markedly increased blast disease resistance,slightly decreased grain yield,and delayed flowering.Amounts of mi R171 b increased gradually in leaves during the vegetative stage but decreased gradually in panicles during the reproductive stage,whereas SCL6-IIs displayed the reverse expression pattern.Together,these results suggest that the expression of mi R171 b was time-and space-dependent during the rice growth period and regulated the balance between rice blast disease resistance,grain yield,and flowering via SCL6-IIs,and that appropriate accumulation of mi R171 b is essential for rice development.展开更多
Age-specific fertility rate and total fertility rate of females are the most important parame- ters in population dynamics. This paper proposes an algorithm to get these parameters from the initial age distribution an...Age-specific fertility rate and total fertility rate of females are the most important parame- ters in population dynamics. This paper proposes an algorithm to get these parameters from the initial age distribution and the total population the years followed. The idea is natural in the sense that the total population is easily to be obtained in a closed society. The authors use a discrete population model to formulate this problem into an inverse problem, which is ill-posed generally. A necessary and sufficient condition for the identifiability is established. An algorithm for reconstruction of age-specific fertility rate is developed.展开更多
基金supported by the National Natural Science Foundation of China(U19A2033,31672090,and 31430072)the Sichuan Applied Fundamental Research Foundation(2020YJ0332)to Wenming Wang。
文摘Micro RNAs(mi RNAs)act as regulators of plant development and multiple stress responses.Here we demonstrate that the rice mi R171 b-SCL6-IIs module regulates the balance between blast resistance,grain yield,and flowering.mi R171 b-overexpressing rice plants(OX171 b)displayed increased rice blast resistance accompanied with enhanced defense responses and late heading,whereas blocking mi R171 b expression in rice(MIM171)led to greater susceptibility to blast disease,associated with compromised defense responses and early heading.Either overexpressing or silencing of mi R171 b significantly affected plant height and number of filled seeds per panicle(seed-setting rate),resulting in decreased grain yield.mi R171 b targets SCL6-IIa,SCL6-IIb,and SCL6-IIc,whose expression was suppressed in OX171 b but increased in MIM171.Mutants of SCL6-IIa,SCL6-IIb,and SCL6-IIc all displayed phenotypes like that of OX171 b,including markedly increased blast disease resistance,slightly decreased grain yield,and delayed flowering.Amounts of mi R171 b increased gradually in leaves during the vegetative stage but decreased gradually in panicles during the reproductive stage,whereas SCL6-IIs displayed the reverse expression pattern.Together,these results suggest that the expression of mi R171 b was time-and space-dependent during the rice growth period and regulated the balance between rice blast disease resistance,grain yield,and flowering via SCL6-IIs,and that appropriate accumulation of mi R171 b is essential for rice development.
基金supported by the National Natural Science Foundation of Chinathe National Research Foundation of South Africa
文摘Age-specific fertility rate and total fertility rate of females are the most important parame- ters in population dynamics. This paper proposes an algorithm to get these parameters from the initial age distribution and the total population the years followed. The idea is natural in the sense that the total population is easily to be obtained in a closed society. The authors use a discrete population model to formulate this problem into an inverse problem, which is ill-posed generally. A necessary and sufficient condition for the identifiability is established. An algorithm for reconstruction of age-specific fertility rate is developed.