期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Glycine-β-cyclodextrin-assisted cometabolism of phenanthrene and pyrene by Pseudomonas stutzeri DJP 1 from marine sediment
1
作者 Junfeng JIANG Weijun TIAN +3 位作者 zhiyang lu Meile CHU Huimin CAO Dantong ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期560-569,共10页
Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the come... Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs. 展开更多
关键词 COMETABOLISM PHENANTHRENE PYRENE glycine-β-cyclodextrin biological accessibility biotoxicity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部