期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor 被引量:1
1
作者 Xueliang Lv Yaxiong Zhang +6 位作者 Xijuan Li zhiye fan Guo Liu Wenjian Zhang Jinyuan Zhou Erqing Xie Zhenxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期352-360,I0010,共10页
Micro-supercapacitors(MSCs)are attractive electrochemical energy storage devices owing to their high power density and extended cycling stability.However,relatively low areal energy density still hinders their practic... Micro-supercapacitors(MSCs)are attractive electrochemical energy storage devices owing to their high power density and extended cycling stability.However,relatively low areal energy density still hinders their practical applications.Here,an asymmetric Mg ion MSC with promising high energy density is fabricated.Firstly,indium tin oxide(ITO)NWs were synthesized by chemical vapor deposition as the excellent current collector.Subsequently,nanostructured Mn_(3)O_(4)and Ppy@FeOOH were deposited on the laser-engraved interdigital structure ITO NWs electrodes as the positive and negative electrodes,respectively.Beneficial from the hierarchical micro-nano structures of active materials,high conductive electron transport pathways,and charge-balanced asymmetric electrodes,the obtained MSC possesses a high potential window of 2.2 V and a high areal capacitance of 107.3 mF cm^(-2)at 0.2 mA cm^(-2).The insitu XRD,VSM,and ex-situ XPS results reveal that the primary energy storage mechanism of Mg ions in negative FeOOH electrode is Mg ions de-/intercalation and phase transition reaction of FeOOH.Furthermore,the MSC exhibits a high specific energy density of 71.18μWh cm^(-2)at a power density of 0.22 mWh cm^(-2)and capacitance retention of 85%after 5000 cycles with unvaried Coulombic efficiency.These results suggest promising applications of our MSC in miniaturized energy storage devices. 展开更多
关键词 CVD Iron hydroxide Electrochemical deposition Asymmetric micro-supercapacitor Laser engraving
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部