This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.Th...This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.展开更多
Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
Two novel nonlinear mode coupling processes for reversed shear Alfvén eigenmode(RSAE) nonlinear saturation are proposed and investigated. In the first process, the RSAE nonlinearly couples to a co-propagating tor...Two novel nonlinear mode coupling processes for reversed shear Alfvén eigenmode(RSAE) nonlinear saturation are proposed and investigated. In the first process, the RSAE nonlinearly couples to a co-propagating toroidal Alfvén eigenmode(TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode. In the second process, the RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode. The condition for the two processes to occur is favored during current ramp. Both the processes contribute to effectively saturate the Alfvénic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.展开更多
Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier...Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics.Spin-transport phenomena in different materials are central topics of spintronics.Unlike electrical charge,spin transport does not depend on electron motion,particularly spin can be transported in insulators without accompanying Joule heating.Therefore,insulators are considered to be ideal materials for spin conductors,in which magnetic insulators are the most compelling systems.Recently,we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems.Herein,we summarize our experimental results,physical nature,and puzzles unknown.Further challenges and potential applications are also discussed.展开更多
The parametric decay process of a reversed shear Alfvén eigenmeode(RSAE)into a geodesic acoustic mode and a kinetic RSAE is investigated using nonlinear gyrokinetic theory.The excitation conditions mainly require...The parametric decay process of a reversed shear Alfvén eigenmeode(RSAE)into a geodesic acoustic mode and a kinetic RSAE is investigated using nonlinear gyrokinetic theory.The excitation conditions mainly require the pump RSAE amplitude to exceed a certain threshold,which could be readily satisfied in burning plasmas operated in steady-state advanced scenario.This decay process can contribute to thermal plasma heating and confinement improvement.展开更多
Geodesic acoustic modes(GAM) are oscillating zonal structures unique to toroidal plasmas,and have been extensively studied in the past decades due to their potential capabilities of regulating microscopic turbulence...Geodesic acoustic modes(GAM) are oscillating zonal structures unique to toroidal plasmas,and have been extensively studied in the past decades due to their potential capabilities of regulating microscopic turbulences and associated anomalous transport.This article reviews linear and nonlinear theories of GAM;with emphases on kinetic treatment,system nonuniformity and realistic magnetic geometry,in order to reflect the realistic experimental conditions.Specifically,in the linear physics,the resonant wave-particle interactions are discussed,with the application to resonant excitation by energetic particles(EPs).The theory of EP-induced GAM(EGAM) is applied to realistic devices for the interpretation of experimental observations,and global effects due to coupling to GAM continuum are also discussed.Meanwhile,in the nonlinear physics,the spontaneous GAM excitation by microscale turbulences is reviewed,including the effects of various system nonuniformities.A unified theoretical framework of GAM/EGAM is then constructed based on our present understandings.The first-principle-based GAM/EGAM theories reviewed here,thus,provide the tools needed for the understanding and interpretation of experimental/numerical results.展开更多
The excitation condition of reversed shear Alfven eigenmodes(RSAEs)has been investigated during sawtoothlike oscillation in the EAST tokamak.The sawtooth-like phenomena can be reproduced in the configuration of revers...The excitation condition of reversed shear Alfven eigenmodes(RSAEs)has been investigated during sawtoothlike oscillation in the EAST tokamak.The sawtooth-like phenomena can be reproduced in the configuration of reversed magnetic shear,and the threshold gradient of electron temperature is formed accordingly,together with the increasing of the confinement of thermal particles.The distribution function of energetic ions density is altered dramatically when the neutral beam is switched from NBI1 L(tangent)to NBI1 R(perpendicular),which can be captured by the measurement of radial neutron camera.The RSAEs are excited easily in the vicinity of q_(min)(1.99 m≤R≤2.06 m)for the injection of neutral beam with perpendicular direction,which should be excited by the steep gradient of energetic ions density.Furthermore,the excitation of RSAEs and the formation of threshold gradient of electron temperature can take place concurrently,which means that the neutral beam with perpendicular injection is beneficial for the establishment of internal transport barrier.展开更多
Antiferromagnetic spin dynamics is the key issue to develop spintronic devices.We adopt ab initio nonadiabatic molecular dynamics with spin–orbit-coupling(SOC)to investigate photoinduced spin dynamics in an antiferro...Antiferromagnetic spin dynamics is the key issue to develop spintronic devices.We adopt ab initio nonadiabatic molecular dynamics with spin–orbit-coupling(SOC)to investigate photoinduced spin dynamics in an antiferromagnetic semiconductor MnPS_(3) monolayer.Optical doping triggers MnPS_(3) from Néel antiferromagnetic to ferromagnetic phase at an experimentally achievable electron–hole pair density of 1.11×10^(14) cm−2.This phase transition can be ascribed to the light-induced mid-gap states of S-p orbitals,which lower the electron excitation energy and strengthen the SOC effect between S-p and Mn-d orbitals.The excited S-p electrons first decay to the mid-gap states due to p–p electron–phonon-coupling and then relax to the spin-down Mn-d orbitals via SOC.Such a dramatic relaxation process prolongs the photogenerated carrier lifetime up to 648 fs,providing an explanation for the unusual optoelectronic performance of MnPS_(3).The reversible switching of magnetic order via optical means gives an important clue for information storage and highly efficient photocatalysts utilizing antiferromagnetic semiconductors.展开更多
Structure,crystallization behavior,and magnetic properties of as-quenched and annealed Fe_(81.3)Si_(4)O_(13)Cu_(1.7)(Cu1.7)alloy ribbons and effects of Nb alloying have been studied.Three-dimensional atom probe and tr...Structure,crystallization behavior,and magnetic properties of as-quenched and annealed Fe_(81.3)Si_(4)O_(13)Cu_(1.7)(Cu1.7)alloy ribbons and effects of Nb alloying have been studied.Three-dimensional atom probe and transmission electron microscopy analyses reveal that high-number-density Cu-clusters and Pre-existing Nano-sized a-Fe Particles(PN-a-Fe)are coexistence in the melt-spun Cu1.7 amorphous matrix,and the PN-α-Fe form by manners of one-direction adjoining and enveloping the Cu-clusters.Two-step crystallization behavior associated with growth of the PN-a-Fe and subsequent nucleation and growth of newly-formedα-Fe is found in the primary crystallization stage of the Cu1.7 alloy.The number densities of the Cu-clusters and PN-a-Fe in melt-spun Fe8_(1.3-x)Si_(4)B_(13)Cu_(1.7)Nb_(x)alloys are gradually reduced with enriching of Nb,and a fully amorphous structure forms at 4 at.%Nb,although smaller Cu-clusters still exist.After annealing,2 at.%Nb coarsens the average size(D_(α-F)e)of theα-Fe grains from 14.0 nm of the Nb-free alloy to 21.6 nm,and 4 at.%Nb refines the D_(α-Fe)to 8.9 nm.The mechanisms of theα-Fe nucleation and growth during quenching and annealing for the alloys with large quantities of PN-α-Fe as well as after Nb alloying have been discussed,and an annealing-induced oc-Fe growth mechanism in term of the barrier co-contributed by competitive growth among the PN-a-Fe and diffusion-suppression effect of Nb atoms has been proposed.A coercivity(HC)αDα-Fe^(3)correlation has been found for the nanocrystalline alloys,and the permeability is inverse with the H_(C).展开更多
基金supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China(No.2019YFE03090100)。
文摘This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
基金Supported by the National Key R&D Program of China(Grant No.2017YFE0301900)the National Natural Science Foundation of China(Grant No.11875233)the China Postdoctoral Science Foundation(Grant No.2020M670756)。
文摘Two novel nonlinear mode coupling processes for reversed shear Alfvén eigenmode(RSAE) nonlinear saturation are proposed and investigated. In the first process, the RSAE nonlinearly couples to a co-propagating toroidal Alfvén eigenmode(TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode. In the second process, the RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode. The condition for the two processes to occur is favored during current ramp. Both the processes contribute to effectively saturate the Alfvénic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874098)LiaoNing Revitalization Talents Program(Grant No.XLYC1807156)the Fundamental Research Funds for the Central Universities(Grant No.DUT17RC(3)073)
文摘Electrical spin,which is the key element of spintronics,has been regarded as a powerful substitute for the electrical charge in the next generation of information technology,in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics.Spin-transport phenomena in different materials are central topics of spintronics.Unlike electrical charge,spin transport does not depend on electron motion,particularly spin can be transported in insulators without accompanying Joule heating.Therefore,insulators are considered to be ideal materials for spin conductors,in which magnetic insulators are the most compelling systems.Recently,we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems.Herein,we summarize our experimental results,physical nature,and puzzles unknown.Further challenges and potential applications are also discussed.
基金supported by the National Key R&D Program of China(No.2017YFE0301900)National Natural Science Foundation of China(No.11875233)Users of Excellence Program of Hefei Science Center CAS(No.2021HSC-UE016)。
文摘The parametric decay process of a reversed shear Alfvén eigenmeode(RSAE)into a geodesic acoustic mode and a kinetic RSAE is investigated using nonlinear gyrokinetic theory.The excitation conditions mainly require the pump RSAE amplitude to exceed a certain threshold,which could be readily satisfied in burning plasmas operated in steady-state advanced scenario.This decay process can contribute to thermal plasma heating and confinement improvement.
基金supported by National Natural Science Foundation of China under grant Nos.11575157 and 11235009the National Magnetic Confinement Fusion Research Program under Grants Nos.2013GB104004 and 2013GB111004+2 种基金Fundamental Research Fund for Chinese Central Universities under Grant No.2017FZA3004EUROfusion Consortium under grant agreement No.633053US DoE Grants
文摘Geodesic acoustic modes(GAM) are oscillating zonal structures unique to toroidal plasmas,and have been extensively studied in the past decades due to their potential capabilities of regulating microscopic turbulences and associated anomalous transport.This article reviews linear and nonlinear theories of GAM;with emphases on kinetic treatment,system nonuniformity and realistic magnetic geometry,in order to reflect the realistic experimental conditions.Specifically,in the linear physics,the resonant wave-particle interactions are discussed,with the application to resonant excitation by energetic particles(EPs).The theory of EP-induced GAM(EGAM) is applied to realistic devices for the interpretation of experimental observations,and global effects due to coupling to GAM continuum are also discussed.Meanwhile,in the nonlinear physics,the spontaneous GAM excitation by microscale turbulences is reviewed,including the effects of various system nonuniformities.A unified theoretical framework of GAM/EGAM is then constructed based on our present understandings.The first-principle-based GAM/EGAM theories reviewed here,thus,provide the tools needed for the understanding and interpretation of experimental/numerical results.
基金the National MCF Energy R&D Program of China(Grant Nos.2019YFE03020000 and 2018YFE0304100)the National Nature Science Foundation of China(Grant Nos.11975267 and 11975273)。
文摘The excitation condition of reversed shear Alfven eigenmodes(RSAEs)has been investigated during sawtoothlike oscillation in the EAST tokamak.The sawtooth-like phenomena can be reproduced in the configuration of reversed magnetic shear,and the threshold gradient of electron temperature is formed accordingly,together with the increasing of the confinement of thermal particles.The distribution function of energetic ions density is altered dramatically when the neutral beam is switched from NBI1 L(tangent)to NBI1 R(perpendicular),which can be captured by the measurement of radial neutron camera.The RSAEs are excited easily in the vicinity of q_(min)(1.99 m≤R≤2.06 m)for the injection of neutral beam with perpendicular direction,which should be excited by the steep gradient of energetic ions density.Furthermore,the excitation of RSAEs and the formation of threshold gradient of electron temperature can take place concurrently,which means that the neutral beam with perpendicular injection is beneficial for the establishment of internal transport barrier.
基金This work was supported by the National Natural Science Foundation of China(12274050,11874097,and 91961204)The Fundamental Research Funds for the Central Universities(Grant No.DUT22LAB104,DUT22ZD103)The authors also acknowledge the Supercomputing Center of the Dalian University of Technology and Tianjin for providing computing resources.
文摘Antiferromagnetic spin dynamics is the key issue to develop spintronic devices.We adopt ab initio nonadiabatic molecular dynamics with spin–orbit-coupling(SOC)to investigate photoinduced spin dynamics in an antiferromagnetic semiconductor MnPS_(3) monolayer.Optical doping triggers MnPS_(3) from Néel antiferromagnetic to ferromagnetic phase at an experimentally achievable electron–hole pair density of 1.11×10^(14) cm−2.This phase transition can be ascribed to the light-induced mid-gap states of S-p orbitals,which lower the electron excitation energy and strengthen the SOC effect between S-p and Mn-d orbitals.The excited S-p electrons first decay to the mid-gap states due to p–p electron–phonon-coupling and then relax to the spin-down Mn-d orbitals via SOC.Such a dramatic relaxation process prolongs the photogenerated carrier lifetime up to 648 fs,providing an explanation for the unusual optoelectronic performance of MnPS_(3).The reversible switching of magnetic order via optical means gives an important clue for information storage and highly efficient photocatalysts utilizing antiferromagnetic semiconductors.
基金financially supported by the National Natural Science Foundation of China(Nos.51571047,5177103951871039)the National Key Research and Development Program of China(No.2017YFB0903903)。
文摘Structure,crystallization behavior,and magnetic properties of as-quenched and annealed Fe_(81.3)Si_(4)O_(13)Cu_(1.7)(Cu1.7)alloy ribbons and effects of Nb alloying have been studied.Three-dimensional atom probe and transmission electron microscopy analyses reveal that high-number-density Cu-clusters and Pre-existing Nano-sized a-Fe Particles(PN-a-Fe)are coexistence in the melt-spun Cu1.7 amorphous matrix,and the PN-α-Fe form by manners of one-direction adjoining and enveloping the Cu-clusters.Two-step crystallization behavior associated with growth of the PN-a-Fe and subsequent nucleation and growth of newly-formedα-Fe is found in the primary crystallization stage of the Cu1.7 alloy.The number densities of the Cu-clusters and PN-a-Fe in melt-spun Fe8_(1.3-x)Si_(4)B_(13)Cu_(1.7)Nb_(x)alloys are gradually reduced with enriching of Nb,and a fully amorphous structure forms at 4 at.%Nb,although smaller Cu-clusters still exist.After annealing,2 at.%Nb coarsens the average size(D_(α-F)e)of theα-Fe grains from 14.0 nm of the Nb-free alloy to 21.6 nm,and 4 at.%Nb refines the D_(α-Fe)to 8.9 nm.The mechanisms of theα-Fe nucleation and growth during quenching and annealing for the alloys with large quantities of PN-α-Fe as well as after Nb alloying have been discussed,and an annealing-induced oc-Fe growth mechanism in term of the barrier co-contributed by competitive growth among the PN-a-Fe and diffusion-suppression effect of Nb atoms has been proposed.A coercivity(HC)αDα-Fe^(3)correlation has been found for the nanocrystalline alloys,and the permeability is inverse with the H_(C).