BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is ...BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is unclear about the mechanism underlying regulation of the HPA axis dysfunction in these anxiolytic effects. OBJECTIVE: To observe the effects of Valeriana jatamansi Jones (Zhizhu Xiang) extract on HPA axis function in a rat model of anxiety, and to compare these effects with positive control estazolam. DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at Chengdu University of Traditional Chinese Medicine, China, between February and September in 2006. MATERIALS: Estazolam was purchased from Shanghai Jiufu Pharmaceutical, China; Valeriana jatamansiJones was purchased from the Lotus Pond Market for Chinese Herbal Medicine in Chengdu. It consisted of iridoids and flavonoid components. METHODS: A total of 72 Sprague Dawley rats, aged 2 months, were randomly assigned to 6 groups low-, medium-, and high-dose Valerianajatamansi Jones groups intragastrically injected with 0.3, 0.6, and 0.9 g/kg per day Valerianajatamansi Jones extract, respectively; estazolam group intragastrically injected with 1.5 mg/kg per day estazolam; model and normal groups administered 5 mL physiological saline. Anxiety was established in all groups, except the normal group, through the use of elevated plus-maze test at 7 days following drug administration. MAIN OUTCOME MEASURES: Blood β-endorphin and corticosterone levels were determined using enzyme-linked immunosorbent assay following treatment with ValerianajatamansiJones extract. Expressions of HPA axis-related genes were measured by cDNA microarray. RESULTS: Blood β-endorphin and corticosterone levels were significantly greater in the model group than in the normal group. Compared with the model group, levels decreased with Valeriana jatamansi Jones extract or estazolam treatment, particularly in the low-dose Valeriana jatamansi Jones group (P〈 0.01). cDNA microarray results demonstrated that corticotropin-releasing hormone and Orexin, which are associated with HPA axis function, were differentially expressed; expression increased in the model group, but decreased in rats treated with Valerianajatamansi Jones extract. CONCLUSION: Valerianajatamansi Jones extract plays a role in regulating HPA axis function in a rat model of anxiety, and this effect was superior to estazolam.展开更多
Cellulose nanofibers were synthesized by acetobacter xylinum(xylinum 1.1812).The cellulose nanofibers with 30-90 nm width constructed three-dimension network gel,which could be used as a wound dressing since it can pr...Cellulose nanofibers were synthesized by acetobacter xylinum(xylinum 1.1812).The cellulose nanofibers with 30-90 nm width constructed three-dimension network gel,which could be used as a wound dressing since it can provide moist environment to a wound.However,cellulose nanofibers have no antimicrobial activity to prevent wound infection.To achieve antimicrobial activity,the cellulose nanofibers can load cuprous oxide(Cu2O)particles on the surface.The cuprous oxide is a kind of safe antibacterial material.The copper ions can be reduced into cuprous oxides by reducing agents such as glucose,N2H4 and sodium hypophosphite.The cellulose nanofibers network gel was soaked in CuSO4 solution and filled with copper ions.The cuprous oxide nanoparticles were in situ synthesized by glucose and embedded in cellulose nanofibers network.The morphologies and structure of the composite gel were analyzed by FESEM,FTIR,WAXRD and inductively coupled plasma(ICP).The sizes of Cu2O embedded in cellulose nanofibers network are 200-500 nm wide.The peak at 605 cm−1 attributed to Cu(I)-O vibration of Cu2O shits to 611 cm−1 in the Cu2O/cellulose composite.The Cu2O/cellulose nanofibers composite reveals the obvious characteristic XRD pattern of Cu2O and the results of ICP show that the content of Cu2O in the composite is 13.1%.The antibacterial tests prove that the Cu2O/cellulose nanofibers composite has the high antibacterial activities which is higher against S.aureus than against E.coli.展开更多
This research investigated the effects of ciprofloxacin(CIP)(0.5,5,and 20 mg/L)on SBR systems under different carbon source conditions.Microbial community abundance and structure were determined by quantitative PCR an...This research investigated the effects of ciprofloxacin(CIP)(0.5,5,and 20 mg/L)on SBR systems under different carbon source conditions.Microbial community abundance and structure were determined by quantitative PCR and high-throughput sequencing,respectively.The biodegradation production of CIP and possible degradation mechanism were also studied.Results showed that CIP had adverse effects on the nutrient removal from wastewater.Compared with sodium acetate,glucose could be more effectively used by microorganisms,thus eliminating the negative effects of CIP.Glucose stimulated the microbial abundance and increased the removal rate of CIP by 18%–24%.The mechanism research indicated that Proteobacteria and Acidobacteria had a high tolerance for CIP.With sodium acetate as a carbon source,the abundance of nitrite-oxidizing bacterial communities decreased under CIP,resulting in the accumulation of nitrite and nitrate.Rhodanobacter and Microbacterium played a major role in nitrification and denitrification when using sodium acetate and glucose as carbon sources.Dyella and Microbacterium played positive roles in the degradation process of CIP and eliminated the negative effect of CIP on SBR,which was consistent with the improved removal efficiency of pollutants.展开更多
Flat subduction refers to low-angle(<10°) or sub-horizontal subduction of oceanic slabs. Flat subduction is only recognized in ~10% of present-day subduction zones, but its impact on the behavior of the overri...Flat subduction refers to low-angle(<10°) or sub-horizontal subduction of oceanic slabs. Flat subduction is only recognized in ~10% of present-day subduction zones, but its impact on the behavior of the overriding plate is particularly strong.For example, flat subduction zones are typically associated with stronger earthquakes. The deformation caused by typical flat subduction will transfer from the trench to the overriding continental interior and form a broad magma belt. The formation mechanism of flat subduction has been linked to the relative buoyancy of subducted oceanic plateaus, overthrusting of the overriding plate, hydrodynamic suction, and trench retreat. However, these mechanisms remain debated. This paper systematically analyzes and summarizes previous studies on flat subduction, and outlines the possible geological effects of flat subduction, such as intracontinental orogeny and magmatism. Using examples from numerical modeling, we discuss the possible formation mechanisms. The most important factors that control the formation of flat subduction are associated with overthrusting of the overriding plate and the arrival of an oceanic plateau at the subduction zone. In addition, trench retreat is necessary to enable flat subduction. Hydrodynamic suction contributes to the reduction of the slab dip angle, but is insufficient to form flat subduction. Future numerical modeling of flat subduction should carry out three-dimensional high-resolution thermo-mechanical simulation, considering the influence of crustal eclogitization(negative buoyancy) and mantle serpentinization(positive buoyancy) of oceanic lithosphere, in combination with geological and geophysical data.展开更多
基金Project of Sichuan Provincial Traditional Chinese Medicine Administration,No.200674Science Foundation of Southwest Jiaotong University,No.2006A10+1 种基金"Key New Drug Innovation" National Science and Technology Major Projects During Eleventh Five-Year Plan,No.2009ZX09103-370Chengdu Science and Technology Major Projects During Eleventh Five-Year Plan,No.09GGZD060SF-012
文摘BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is unclear about the mechanism underlying regulation of the HPA axis dysfunction in these anxiolytic effects. OBJECTIVE: To observe the effects of Valeriana jatamansi Jones (Zhizhu Xiang) extract on HPA axis function in a rat model of anxiety, and to compare these effects with positive control estazolam. DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at Chengdu University of Traditional Chinese Medicine, China, between February and September in 2006. MATERIALS: Estazolam was purchased from Shanghai Jiufu Pharmaceutical, China; Valeriana jatamansiJones was purchased from the Lotus Pond Market for Chinese Herbal Medicine in Chengdu. It consisted of iridoids and flavonoid components. METHODS: A total of 72 Sprague Dawley rats, aged 2 months, were randomly assigned to 6 groups low-, medium-, and high-dose Valerianajatamansi Jones groups intragastrically injected with 0.3, 0.6, and 0.9 g/kg per day Valerianajatamansi Jones extract, respectively; estazolam group intragastrically injected with 1.5 mg/kg per day estazolam; model and normal groups administered 5 mL physiological saline. Anxiety was established in all groups, except the normal group, through the use of elevated plus-maze test at 7 days following drug administration. MAIN OUTCOME MEASURES: Blood β-endorphin and corticosterone levels were determined using enzyme-linked immunosorbent assay following treatment with ValerianajatamansiJones extract. Expressions of HPA axis-related genes were measured by cDNA microarray. RESULTS: Blood β-endorphin and corticosterone levels were significantly greater in the model group than in the normal group. Compared with the model group, levels decreased with Valeriana jatamansi Jones extract or estazolam treatment, particularly in the low-dose Valeriana jatamansi Jones group (P〈 0.01). cDNA microarray results demonstrated that corticotropin-releasing hormone and Orexin, which are associated with HPA axis function, were differentially expressed; expression increased in the model group, but decreased in rats treated with Valerianajatamansi Jones extract. CONCLUSION: Valerianajatamansi Jones extract plays a role in regulating HPA axis function in a rat model of anxiety, and this effect was superior to estazolam.
基金The authors are grateful to the financial support provided by the National key R&D Program of China(2017YFB0309400-2017YFB0309405)Natural Science Foundation of China(Grant No.51506075)financial support from China Scholarship Council.
文摘Cellulose nanofibers were synthesized by acetobacter xylinum(xylinum 1.1812).The cellulose nanofibers with 30-90 nm width constructed three-dimension network gel,which could be used as a wound dressing since it can provide moist environment to a wound.However,cellulose nanofibers have no antimicrobial activity to prevent wound infection.To achieve antimicrobial activity,the cellulose nanofibers can load cuprous oxide(Cu2O)particles on the surface.The cuprous oxide is a kind of safe antibacterial material.The copper ions can be reduced into cuprous oxides by reducing agents such as glucose,N2H4 and sodium hypophosphite.The cellulose nanofibers network gel was soaked in CuSO4 solution and filled with copper ions.The cuprous oxide nanoparticles were in situ synthesized by glucose and embedded in cellulose nanofibers network.The morphologies and structure of the composite gel were analyzed by FESEM,FTIR,WAXRD and inductively coupled plasma(ICP).The sizes of Cu2O embedded in cellulose nanofibers network are 200-500 nm wide.The peak at 605 cm−1 attributed to Cu(I)-O vibration of Cu2O shits to 611 cm−1 in the Cu2O/cellulose composite.The Cu2O/cellulose nanofibers composite reveals the obvious characteristic XRD pattern of Cu2O and the results of ICP show that the content of Cu2O in the composite is 13.1%.The antibacterial tests prove that the Cu2O/cellulose nanofibers composite has the high antibacterial activities which is higher against S.aureus than against E.coli.
基金jointly supported by the Key R&D Project of Hunan Province(No.2018WK4007)the National Natural Science Foundation of China(No.51879105)。
文摘This research investigated the effects of ciprofloxacin(CIP)(0.5,5,and 20 mg/L)on SBR systems under different carbon source conditions.Microbial community abundance and structure were determined by quantitative PCR and high-throughput sequencing,respectively.The biodegradation production of CIP and possible degradation mechanism were also studied.Results showed that CIP had adverse effects on the nutrient removal from wastewater.Compared with sodium acetate,glucose could be more effectively used by microorganisms,thus eliminating the negative effects of CIP.Glucose stimulated the microbial abundance and increased the removal rate of CIP by 18%–24%.The mechanism research indicated that Proteobacteria and Acidobacteria had a high tolerance for CIP.With sodium acetate as a carbon source,the abundance of nitrite-oxidizing bacterial communities decreased under CIP,resulting in the accumulation of nitrite and nitrate.Rhodanobacter and Microbacterium played a major role in nitrification and denitrification when using sodium acetate and glucose as carbon sources.Dyella and Microbacterium played positive roles in the degradation process of CIP and eliminated the negative effect of CIP on SBR,which was consistent with the improved removal efficiency of pollutants.
基金supported by the National Key Research and Development of China (Grant No. 2016YFC0600406)the National Natural Science Foundation of China (Grant Nos. 41731072, 41574095)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB18000000)。
文摘Flat subduction refers to low-angle(<10°) or sub-horizontal subduction of oceanic slabs. Flat subduction is only recognized in ~10% of present-day subduction zones, but its impact on the behavior of the overriding plate is particularly strong.For example, flat subduction zones are typically associated with stronger earthquakes. The deformation caused by typical flat subduction will transfer from the trench to the overriding continental interior and form a broad magma belt. The formation mechanism of flat subduction has been linked to the relative buoyancy of subducted oceanic plateaus, overthrusting of the overriding plate, hydrodynamic suction, and trench retreat. However, these mechanisms remain debated. This paper systematically analyzes and summarizes previous studies on flat subduction, and outlines the possible geological effects of flat subduction, such as intracontinental orogeny and magmatism. Using examples from numerical modeling, we discuss the possible formation mechanisms. The most important factors that control the formation of flat subduction are associated with overthrusting of the overriding plate and the arrival of an oceanic plateau at the subduction zone. In addition, trench retreat is necessary to enable flat subduction. Hydrodynamic suction contributes to the reduction of the slab dip angle, but is insufficient to form flat subduction. Future numerical modeling of flat subduction should carry out three-dimensional high-resolution thermo-mechanical simulation, considering the influence of crustal eclogitization(negative buoyancy) and mantle serpentinization(positive buoyancy) of oceanic lithosphere, in combination with geological and geophysical data.