期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH_(2) 被引量:2
1
作者 zhiyu lu Jiahuan He +5 位作者 Mengchen Song Yan Zhang Fuying Wu Jiaguang Zheng Liuting Zhang Lixin Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期44-53,共10页
The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)... The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)was successfully synthesized and doped with MgH_(2) by ball milling to improve its hydrogen storage performance.Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V_(2)O_(3) with a bullet-like structure.After adding 7wt%MOFs-V,the initial desorption temperature of MgH_(2) was reduced from 340.0 to 190.6℃.Besides,the MgH_(2)+7wt%MOFs-V composite released 6.4wt%H_(2) within 5 min at 300℃.Hydrogen uptake was started at 60℃under 3200 kPa hydrogen pressure for the 7wt%MOFs-V containing sample.The desorption and absorption apparent activity energies of the MgH_(2)+7wt%MOFs-V composite were calculated to be(98.4±2.9)and(30.3±2.1)kJ·mol^(-1),much lower than(157.5±3.3)and(78.2±3.4)kJ·mol^(−1) for the as-prepared MgH_(2).The MgH_(2)+7wt%MOFs-V composite exhibited superior cyclic property.During the 20 cycles isothermal dehydrogenation and hydrogenation experiments,the hydrogen storage capacity stayed almost unchanged.X-ray diffraction(XRD)and X-ray photoelectron spectrometer(XPS)measurements confirmed the presence of metallic vanadium in the MgH_(2)+7wt%MOFs-V composite,which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH_(2) system. 展开更多
关键词 hydrogen storage magnesium hydrides vanadium based MOFs catalytic mechanism
下载PDF
Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived Cobalt@Nickel oxide bimetallic catalyst 被引量:2
2
作者 Yan Zhang Jiaguang Zheng +4 位作者 zhiyu lu Mengchen Song Jiahuan He Fuying Wu Liuting Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第12期161-171,共11页
In this study,a MOF-derived bimetallic Co@NiO catalyst was synthesized and doped into MgH_(2)to improve the hydrogen desorption and resorption kinetics.The Co@NiO catalyst decreased the onset dehydrogenation temperatu... In this study,a MOF-derived bimetallic Co@NiO catalyst was synthesized and doped into MgH_(2)to improve the hydrogen desorption and resorption kinetics.The Co@NiO catalyst decreased the onset dehydrogenation temperature of MgH_(2)by 160℃,compared with un-doped MgH_(2).The MgH^(2+)9%(mass)Co@NiO composite released 6.6%(mass)hydrogen in 350 s at 315℃and uptook 5.4%(mass)hydrogen in500 s at 165℃,showing greatly accelerated de/rehydrogenation rates.Besides,the desorption activation energy of MgH^(2+)9%(mass)Co@NiO was decreased to(93.8±8.4)kJ·mol^(-1).Noteworthy,symbiotic Mg_(2)NiH_(4)/Mg_(2)CoH_(5)clusters were in-situ formed from bimetallic precursors and inlaid on MgH_(2)surface,which are considered as"multi-step hydrogen pumps",and provides surface pathways for hydrogen absorption.Meanwhile,the introduced Mg_(2)NiH_(4)/Mg_(2)CoH_(5)interfaces could provide numerous low energy barrier H diffusion channels,therefore accelerating the hydrogen release and uptake.This research proposes new insights to design high-efficiency bimetallic catalyst for MgH_(2)hydrogen storage. 展开更多
关键词 HYDROGEN ABSORPTION CATALYST MgH_(2) Bimetallic materials Synergistic effect
下载PDF
The effect of different Co phase structure(FCC/HCP)on the catalytic action towards the hydrogen storage performance of MgH_(2)
3
作者 Liuting Zhang Haijie Yu +5 位作者 zhiyu lu Changhao Zhao Jiaguang Zheng Tao Wei Fuying Wu Beibei Xiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期343-352,共10页
High hydrogen desorption temperature and sluggish reaction kinetics are the major limitations for the practical application of MgH_(2).In this study,Co particles with a face centered cubic(FCC)structure and a hexagona... High hydrogen desorption temperature and sluggish reaction kinetics are the major limitations for the practical application of MgH_(2).In this study,Co particles with a face centered cubic(FCC)structure and a hexagonal close packed(HCP)structure were prepared facilely and proved to be good catalysts for magnesium hydride.Co particles with FCC structure presented better catalytic effect on MgH_(2)than that with HCP structure.Both 7%(mass)Co FCC and HCP particle modified MgH_(2)decreased the initial dehydrogenation temperature from 301.3℃ to approximately 195.0℃,but 7%(mass)Co with FCC structure modified MgH_(2)has a faster desorption rate,and around 6.5%(mass)H_(2)was desorbed in 10 min at325℃.Hydrogen uptake was detected at 70℃ under 3.25 MPa hydrogen pressure and 6.0%(mass)H_(2)was recharged in 40 min at 150℃.The hydrogen desorption and absorption activation energy for 7%(mass)FCC Co modified MgH_(2)was significantly decreased to(76.6±8.3)kJ·mol^(-1) and(68.3±6.0)kJ·mol^(-1),respectively.Thermodynamic property was also studied,the plateau pressures of MgH_(2)+7%(mass)FCC Co were determined to be 0.14,0.28,0.53 and 0.98 MPa for 300℃,325℃,350℃ and375℃.The decomposition enthalpy of hydrogen(ΔH)for MgH_(2)+7%(mass)FCC Co was(80.6±0.1)kJ·mol^(-1),5.8 kJ·mol^(-1)lower than that of as-prepared MgH_(2).Moreover,cycling performance for the first20 cycles revealed that the reaction kinetics and capacity of MgH_(2)-FCC Co composite remained almost unchanged.The result of density functional theory calculation demonstrated that cobalt could extract the Mg AH bond and reduced the decompose energy of magnesium hydride.Our paper can be presented as a reference for searching highly effective catalysts for hydrogen storage and other energy-related research fields. 展开更多
关键词 Hydrogen storage MgH_(2) FCC/HCP Co particles CATALYSIS Density functional theory
下载PDF
Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO_(3)nanoparticles
4
作者 Nianhua Yan Xiong lu +5 位作者 zhiyu lu Haijie Yu Fuying Wu Jiaguang Zheng Xiuzhen Wang Liuting Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3542-3552,共11页
As a promising hydrogen storage material,the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics.In this paper,three kinds of NiTiO3catalysts with different mole ratio o... As a promising hydrogen storage material,the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics.In this paper,three kinds of NiTiO3catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties.Experimental results indicated that all the Mg-NiTiO3composites showed prominent hydrogen storage performance.Especially,the Mg-NiTiO3/TiO2composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8±1.2(nanocrystalline Mg)k J/mol to 34.2±0.2 k J/mol.In addition,the hydrogenated sample began to release hydrogen at about 193.2℃and eventually desorbed 6.6 wt%H2.The desorption enthalpy of the hydrogenated Mg-NiTiO3-C was estimated to be 78.6±0.8 k J/mol,5.3 k J/mol lower compared to 83.9±0.7 k J/mol of nanocrystalline Mg.Besides,the sample revealed splendid cyclic stability during 20 cycles.No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt%hydrogen capacity degradation was observed.Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3-C composite,which might serve as a reference for future design of highly effective hydrogen storage materials. 展开更多
关键词 Hydrogen storage NiTiO3 Nanocrystalline Mg REVERSIBILITY Synergistic effect
下载PDF
A direct position determination method with combined TDOA and FDOA based on particle filter 被引量:11
5
作者 zhiyu lu Bin BA +2 位作者 Jianhui WANG Wenchao LI Daming WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期161-168,共8页
The localization of a stationary transmitter using moving receivers is considered. The original Direct Position Determination (DPD) methods, with combined Time Difference of Arrival (TDOA) and Frequency Difference... The localization of a stationary transmitter using moving receivers is considered. The original Direct Position Determination (DPD) methods, with combined Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA), do not perform well under low Signal-to-Noise Ratio (SNR), and worse still, the computation cost is difficult to accept when the computational capabilities are limited. To get better positioning performance, we present a new DPD algorithm that proves to be more computationally efficient and more precise for weak signals than the conventional approach. The algorithm partitions the signal received with the same receiver into multiple non-overlapping short-time signal segments, and then uses the TDOA, the FDOA and the coherency among the short-time signals to locate the target. The fast maximum likelihood estimation, one iterative method based on particle filter, is designed to solve the problem of high computation load. A secondary but important result is a derivation of closed-form expressions of the Cramer-Rao Lower Bound (CRLB). The simulation results show that the algorithm proposed in this paper outperforms the traditional DPD algorithms with more accurate results and higher computational efficiency, and especially at low SNR, it is more close to the CRLB. 展开更多
关键词 Direct position determination Cramer-Rao lower bound Frequency difference of arrival Time difference of arrival Particle filter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部