期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape
1
作者 zhiyuan dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1461-1489,共29页
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o... The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model. 展开更多
关键词 High-speed train multi-objective optimization PARAMETERIZATION optimization algorithm surrogate model sample infill criterion
下载PDF
Effect of RANS Model on the Aerodynamic Characteristics of a Train in Crosswinds Using DDES 被引量:7
2
作者 Tian Li zhiyuan dai Weihua Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期555-570,共16页
Detached eddy simulation has been widely applied to simulate the flow around trains in recent years.The Reynolds-averaged Navier-Stokes(RANS)model for delayed detached eddy simulation(DDES)is an essential user input.T... Detached eddy simulation has been widely applied to simulate the flow around trains in recent years.The Reynolds-averaged Navier-Stokes(RANS)model for delayed detached eddy simulation(DDES)is an essential user input.The effect of the RANS model for DDES on the aerodynamic characteristics of a train in crosswinds is investigated in this study.Three different DDES models are used,based on the Spalart-Allmaras model(SA),the realizable k-εmodel(RKE),and the shear stress transport k-ωmodel(SST).Results show that all DDES models can give relatively accurate predictions of pressure coefficient on almost all surfaces.There are only some specific differences in the small vortices,while similar flow patterns around trains could be predicted.The SST based DDES model(SSTDDES)gives the most accurate numerical results among the three models for the surface pressure.The variations in pressure on the leeward face play a key role in the variation of the side force. 展开更多
关键词 Numerical simulation DES train aerodynamics CROSSWIND RANS.
下载PDF
Numerical Study on Aerodynamic Performance of High-Speed Pantograph with Double Strips 被引量:10
3
作者 zhiyuan dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2020年第1期31-40,共10页
Pantograph is a critical component of the high-speed train.It collects power through contact with catenary,which significantly affects the running safety of the train.Pantograph with double collector strips is one com... Pantograph is a critical component of the high-speed train.It collects power through contact with catenary,which significantly affects the running safety of the train.Pantograph with double collector strips is one common type.The aerodynamic performance of the collector strips may affect the current collection of the pantograph.In this study,the aerodynamic performance of the pantograph with double strips is investigated.The numerical results are consistent with the experimental ones.The error in the aerodynamic drag force of the pantograph between numerical and experimental results is less than 5%.Three different conditions of the strips are studied,including the front strip,the rear strip,and the double strips.Results show that the presence of the front strip will affect the lift force of the rear strip,and reduce the resistance of the rear strip under the opening condition.Meanwhile,the rear strip has few effects on the front strip under the opening operation condition.The law of the resistance for the interaction between two strips under the closing condition is similar to the opening one. 展开更多
关键词 PANTOGRAPH double strip train aerodynamics numerical simulation
下载PDF
Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph 被引量:5
4
作者 zhiyuan dai Tian Li +2 位作者 Ning Zhou Jiye Zhang Weihua Zhang 《Railway Engineering Science》 2022年第1期117-128,共12页
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard,... Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012. 展开更多
关键词 High-speed pantograph Aerodynamic uplift force BAFFLE Numerical simulation Multibody simulation
下载PDF
Effect of streamlined nose length on aerodynamic performance of high-speed train with a speed of 400 km/h
5
作者 Nianxun LI Tian LI +2 位作者 zhiyuan dai Deng QIN Jiye ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期525-540,共16页
The streamlined nose length(SNL)plays a crucial role in determining the aerodynamic performance of high-speed trains.An appropriate SNL can not only effectively reduce the magnitude of aerodynamic drag and lift forces... The streamlined nose length(SNL)plays a crucial role in determining the aerodynamic performance of high-speed trains.An appropriate SNL can not only effectively reduce the magnitude of aerodynamic drag and lift forces,but also improve the performance of the high-speed train in tunnel passing and crosswind circumstances.In this study,a numerical simulation of the aerodynamic performance of high-speed trains at a speed of 400 km/h,with varying SNLs,is conducted using the k-ωshear stress transport(SST)turbulence model.The different SNLs include 6.0,7.0,8.0,9.0,9.8,12.0,15.0,and 18.0 m.In order to validate the accuracy of the numerical simulation,its results are compared with wind tunnel test data obtained from the literature.Numerical simulation is carried out using compressible and incompressible gases to determine the effect of gas compressibility on results.The impact of SNL on the aerodynamic performance of the trains is analyzed in terms of aerodynamic forces,velocity,and pressure distributions.In comparison to the original train,the train with a 6.0 m SNL experienced a 10.8%increase in overall aerodynamic resistance.Additionally,the lift forces on the head and tail cars increased by 35.7%and 75.5%,respectively.On the other hand,the train with an 18.0 m SNL exhibited a 16.5%decrease in aerodynamic drag.Furthermore,the lift forces on the head and tail cars decreased by 21.9%and 49.7%,respectively.The aerodynamic drag force of the entire train varies linearly with the SNL,while the aerodynamic lift of the tail car follows a quadratic function in relation to the SNL. 展开更多
关键词 Streamlined nose length(SNL) High-speed train Aerodynamic performance Numerical simulation Flow structures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部