为明确浅埋大跨度隧道预应力锚杆的锚固参数及支护方案,为主动支护设计提供依据,以青岛地铁6号线华山一路站为例,采用理论分析、数值模拟、现场试验的研究手段,探究不同支护参数下的隧道施工力学特征。研究结果表明:(1)主动支护通过补...为明确浅埋大跨度隧道预应力锚杆的锚固参数及支护方案,为主动支护设计提供依据,以青岛地铁6号线华山一路站为例,采用理论分析、数值模拟、现场试验的研究手段,探究不同支护参数下的隧道施工力学特征。研究结果表明:(1)主动支护通过补偿径向应力σ3,降低切向应力σ1,改善了围岩的应力状态,锚杆与围岩形成共同承载体,提高了围岩的弹性模量、黏聚力、内摩擦角等力学性能;(2)锚固段长度越大,剪应力的分布范围呈增大趋势,随着张拉载荷的增加,剪应力峰值由锚固段端部逐渐向尾部转移,锚固长度为锚杆长度的40%~50%时锚固体的安全储备高;(3)锚杆的预应力在0~120 k N增加过程中,围岩的变形量与变形范围呈下降的趋势,拱部塑性区逐渐消失,拱脚与边墙的塑性区分布范围不断降低;随着锚杆的支护密度的提升,围岩的变形与应力均得到了一定程度的控制,但提升效果不显著;(4)从现场监测结果来看,主动支护结构稳定且安全储备高,其中围岩变形量在5.7 mm以内,格栅钢筋应力最高值为48.2 MPa,锚杆轴力由张拉至隧道开挖完成变化率仅为3.5%。展开更多
文摘为明确浅埋大跨度隧道预应力锚杆的锚固参数及支护方案,为主动支护设计提供依据,以青岛地铁6号线华山一路站为例,采用理论分析、数值模拟、现场试验的研究手段,探究不同支护参数下的隧道施工力学特征。研究结果表明:(1)主动支护通过补偿径向应力σ3,降低切向应力σ1,改善了围岩的应力状态,锚杆与围岩形成共同承载体,提高了围岩的弹性模量、黏聚力、内摩擦角等力学性能;(2)锚固段长度越大,剪应力的分布范围呈增大趋势,随着张拉载荷的增加,剪应力峰值由锚固段端部逐渐向尾部转移,锚固长度为锚杆长度的40%~50%时锚固体的安全储备高;(3)锚杆的预应力在0~120 k N增加过程中,围岩的变形量与变形范围呈下降的趋势,拱部塑性区逐渐消失,拱脚与边墙的塑性区分布范围不断降低;随着锚杆的支护密度的提升,围岩的变形与应力均得到了一定程度的控制,但提升效果不显著;(4)从现场监测结果来看,主动支护结构稳定且安全储备高,其中围岩变形量在5.7 mm以内,格栅钢筋应力最高值为48.2 MPa,锚杆轴力由张拉至隧道开挖完成变化率仅为3.5%。