Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still probl...Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still problems such as difficult sintering and easy hydration.Magnesia-calcia materials with various calcium oxide contents were prepared by using induction sintering,and the sintering property combined with the hydration resistance of the materials was investigated.The experimental results showed that the magnesia-calcia materials prepared under induction field had higher density,microhardness and hydration resistance.In particular,the relative density of induction sintered magnesia-calcia materials with 50 mo1%CaO was greater than 98%,and the average grain size of CaO was 4.56μm,which was much larger than that of traditional sintered materials.In order to clarify the densification and microstructure evolution mechanism of the magnesia-calcia materials,the changes in temperature and magnetic field throughout the sintering process were analyzed by using finite element simulation.The results showed that the larger heating rate and higher sintering temperature under the induction sintering mode were beneficial to the rapid densification.In addition,the hot spots generated within the material due to the difference in high-temperature electric conductivity between MgO and CaO were the critical factor to realize selective sintering in MgO-CaO system,which provides a novel pathway to solve the problem of difficult sintering and control the microstructure of high-temperature composite material used in the field of high-purity steel smelting.展开更多
Metakaolin(MK)is an important refractory raw material,which has been used as a cementitious material.In order to improve the bonding strength of MK,the composite cementitious materials were prepared by MK mixed with h...Metakaolin(MK)is an important refractory raw material,which has been used as a cementitious material.In order to improve the bonding strength of MK,the composite cementitious materials were prepared by MK mixed with hydrat-able alumina(HA)and microsilica(MS),respectively.The silane coupling agent(SCA)was introduced as a modifying agent.The rheological properties of MK-based composite cementitious slurries were investigated.The mechanical properties of corundum castables bonded with the composite cementitious materials and calcium aluminate cement(CAC)were comparatively studied.The results show that SCA improves the rheological properties of MK-based composite cementitious materials.The slurry of MK–MS mixture flows in a plastic manner,while the slurry of MK–HA mixture presents pseudoplastic flow.The addition of SCA reduces the yield stress value of the MK–HA slurry.The bonding strength of castables bonded with MK-based composite cementitious materials is lower than that of CAC bonding castables.The room temperature strength of MK–MS composite bonding castable remains the highest after being treated either at 1100 or 1550°C,and its high temperature modulus of rupture is higher than that of CAC bonding castables with microsilica added.展开更多
基金The authors would like to express the gratitude for the financial support from the National Natural Science Foundation of China(U20A20239).
文摘Magnesia-calcia refractories are widely used in the production process of clean steel due to their excellent high-tem-perature stability,slag resistance and ability to purify molten steel.However,there are still problems such as difficult sintering and easy hydration.Magnesia-calcia materials with various calcium oxide contents were prepared by using induction sintering,and the sintering property combined with the hydration resistance of the materials was investigated.The experimental results showed that the magnesia-calcia materials prepared under induction field had higher density,microhardness and hydration resistance.In particular,the relative density of induction sintered magnesia-calcia materials with 50 mo1%CaO was greater than 98%,and the average grain size of CaO was 4.56μm,which was much larger than that of traditional sintered materials.In order to clarify the densification and microstructure evolution mechanism of the magnesia-calcia materials,the changes in temperature and magnetic field throughout the sintering process were analyzed by using finite element simulation.The results showed that the larger heating rate and higher sintering temperature under the induction sintering mode were beneficial to the rapid densification.In addition,the hot spots generated within the material due to the difference in high-temperature electric conductivity between MgO and CaO were the critical factor to realize selective sintering in MgO-CaO system,which provides a novel pathway to solve the problem of difficult sintering and control the microstructure of high-temperature composite material used in the field of high-purity steel smelting.
基金The present work was supported by National Natural Science Foundation of China(Grant Nos.U21A2057 and U20A20239)College Students'Innovative Entrepreneurial Training Plan Program of Hubei Province(Grant No.20181088100)。
文摘Metakaolin(MK)is an important refractory raw material,which has been used as a cementitious material.In order to improve the bonding strength of MK,the composite cementitious materials were prepared by MK mixed with hydrat-able alumina(HA)and microsilica(MS),respectively.The silane coupling agent(SCA)was introduced as a modifying agent.The rheological properties of MK-based composite cementitious slurries were investigated.The mechanical properties of corundum castables bonded with the composite cementitious materials and calcium aluminate cement(CAC)were comparatively studied.The results show that SCA improves the rheological properties of MK-based composite cementitious materials.The slurry of MK–MS mixture flows in a plastic manner,while the slurry of MK–HA mixture presents pseudoplastic flow.The addition of SCA reduces the yield stress value of the MK–HA slurry.The bonding strength of castables bonded with MK-based composite cementitious materials is lower than that of CAC bonding castables.The room temperature strength of MK–MS composite bonding castable remains the highest after being treated either at 1100 or 1550°C,and its high temperature modulus of rupture is higher than that of CAC bonding castables with microsilica added.