期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Human umbilical cord blood stem cells and brainderived neurotrophic factor for optic nerve injury: a biomechanical evaluation 被引量:13
1
作者 zhong-jun zhang Ya-jun Li +5 位作者 Xiao-guang Liu Feng-xiao Huang Tie-jun Liu Dong-mei Jiang Xue-man Lv Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1134-1138,共5页
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model... Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood stem cells brain-derived neurotrophic factor biomechanical properties neural regeneration
下载PDF
Lipoxin A4 Ameliorates Lipopolysaccharide-lnduced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1 被引量:4
2
作者 Jun-Zhi zhang Zhan-Li Liu +2 位作者 Yao-Xian zhang Hai-Jiu Lin zhong-jun zhang 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第11期1342-1348,共7页
Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALl) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lu... Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALl) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4. Methods: A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing ofA549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis ofA549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression. Results: The A549 cell models of ALl were constrticted and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream- regulated gent- 1 (NDRG 1 ) was validated by real-time-PCR and Western blot. NDRG 1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG 1 expression induced by LXA4. NDRG I siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG 1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P 0.001 ) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ±0.025, P 〈 0.001 ) expressions and serum- and glucocorticoid-inducible kinase I phosphorylation (treatment vs. control, 0.442± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG 1 expression induced by LXA4. Conclusion: Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression. 展开更多
关键词 Acute Lung Injury Epithelial Sodium Channel LIPOPOLYSACCHARIDE Lipoxin A4 N-myc Downstream-Regulated Gene-1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部