A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are anal...A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A con- tinuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.展开更多
Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold ...Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed(CFB) riser. It is shown that in the horizontal direction,the average rotation speed in the near-wall area is larger than that in the center area,while in the vertical direction,it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size,particle shape,particle number density,particle collision behavior,and the surrounding flow field,etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux,however,takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases.展开更多
To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen ...To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen dioxide into sodium sulfide solution. The absorption rates under various experimental conditions were measured and the effects of experimental conditions on nitrogen dioxide absorption rate were discussed. The results show that, in the range of this study, nitrogen dioxide absorption rate increases with increasing sodium sulfide concentration, nitrogen dioxide inlet concentration, and flue gas flow rate, but decreases with increasing reaction temperature and oxygen content in flue gas.展开更多
Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor. The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was st...Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor. The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was studied and the effects of common acid gas constituents were evaluated individually to avoid complications resulting from the coexistence of multiple components. The results suggest that surface functional groups (SFGs) on activated carbon (AC) are vital to Hg0 capture in the absence of acid gases. Meanwhile, the presence of acid gas components coupled with defective graphitic lattices on TAC plays an important role in effective Hg0 capture. The presence of HC1, NO2, and NO individually in basic gases markedly enhances Hg0 capture on TAC due to the heterogeneous oxidation of Hg0 on acidic sites created on the carbon surface and catalysis by the defective graphitic lattices on TAC. Similarly, the presence of SO2 improves Hg0 capture by about 20%. This improvement likely results from the deposition of sulfur groups on the AC surface and oxidation of the elemental mercury by SO2 due to catalysis on the carbon surface. Furthermore, O2 exhibits a synergistic effect on Hg0 oxidation and capture when acid gases are present in the flue gases.展开更多
In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirc...In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirconium dioxide (ZrOz) ce- ramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteris- tics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NOx emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio 〈0.4 with NOx and CO emission levels within 0.002%~).003% and 0.001%q3.002%, respectively.展开更多
Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and bio...Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and biomass is predicted by thermodynamic and chemical kinetic calculations.Existence of solid minerals is evaluated by X-ray diffraction(XRD)analysis of ashes from pressure thermogravimetric combustion.Results indicate that a rise in pressure affects solid alkali minerals negligibly,but increases their contents in the liquid phase and decreases them in the gas phase,especially below 900℃.Thus,less KCl will condense on the boiler heat transfer surfaces leading to reduced corrosion.Increasing the blend ratio of biomass to coal will raise the content of potassium-based minerals but reduce the sodium-based ones.The alkali-associated slagging in the boiler can be minimized by the synergistic effect of co-combustion of sulphur-rich coal and potassium-rich biomass,forming stable solid K2SO4 at typical fluidized bed combustion temperatures.Kinetics modelling based on reaction mechanisms shows that oxidation of SO2 to SO3 plays a major role in K2SO4 formation but that the contribution of this oxidation decreases with increase in pressure.展开更多
基金Project supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No.2006BAA01B04)the New Century Excellent Talent in University(No. NCET-06-0513), China
文摘A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A con- tinuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.
基金the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA03B01)the China Postdoctoral Science Foundation(No. 20070421165)
文摘Particle rotation plays an important role in gas-solid flows. This paper presents an experimental investigation on the spatial distribution of average rotation speed for glass beads in the upper dilute zone of a cold circulating fluidized bed(CFB) riser. It is shown that in the horizontal direction,the average rotation speed in the near-wall area is larger than that in the center area,while in the vertical direction,it decreases as the height increases. The reason resulting in this distribution is analyzed by considering several factors including particle size,particle shape,particle number density,particle collision behavior,and the surrounding flow field,etc. The effects of CFB operation conditions on the spatial distribution of average rotation speed are also studied. The results show that the increasing superficial gas velocity increases the average rotation speed of particles in the near wall area but takes nearly no effect on that in the center area. The external solids mass flux,however,takes the opposite effect. It is found that the average rotation speeds of particles in both areas are increased as the total amount of bed material increases.
基金Project supported by the International Cooperation Foundation for China-USA,NSFC-NSF(No.51661125012)the National Key Research and Development Program of China(No.2017YFB0602802)+1 种基金the “Bao Yu Gang” Foundation for Foreign Guest Professor Programthe Fundamental Research Funds for the Central Universities,China
基金supported by the Key Project of the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA01B04)the Program for New Excellent Talents in University (No. NCET-06-0513), China
文摘To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen dioxide into sodium sulfide solution. The absorption rates under various experimental conditions were measured and the effects of experimental conditions on nitrogen dioxide absorption rate were discussed. The results show that, in the range of this study, nitrogen dioxide absorption rate increases with increasing sodium sulfide concentration, nitrogen dioxide inlet concentration, and flue gas flow rate, but decreases with increasing reaction temperature and oxygen content in flue gas.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.R107532)the Program for New Century Excellent Talents in Universities(No.NCET-08-0490)+2 种基金the Nonprofit Specific Environmental Research Fund(No.200909024)the Fujian Provincial Natural Science Foundation of China(No.2011J01322)the Project of Science and Technology Innovation Platform of Fujian Province(No.2009H2006),China
文摘Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor. The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was studied and the effects of common acid gas constituents were evaluated individually to avoid complications resulting from the coexistence of multiple components. The results suggest that surface functional groups (SFGs) on activated carbon (AC) are vital to Hg0 capture in the absence of acid gases. Meanwhile, the presence of acid gas components coupled with defective graphitic lattices on TAC plays an important role in effective Hg0 capture. The presence of HC1, NO2, and NO individually in basic gases markedly enhances Hg0 capture on TAC due to the heterogeneous oxidation of Hg0 on acidic sites created on the carbon surface and catalysis by the defective graphitic lattices on TAC. Similarly, the presence of SO2 improves Hg0 capture by about 20%. This improvement likely results from the deposition of sulfur groups on the AC surface and oxidation of the elemental mercury by SO2 due to catalysis on the carbon surface. Furthermore, O2 exhibits a synergistic effect on Hg0 oxidation and capture when acid gases are present in the flue gases.
文摘In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirconium dioxide (ZrOz) ce- ramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteris- tics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NOx emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio 〈0.4 with NOx and CO emission levels within 0.002%~).003% and 0.001%q3.002%, respectively.
基金Project supported by the National Science Foundation Cooperation of China and USA(NSFC-NSF)(No.51661125012)Project of the State Key Laboratory of Clean Energy Utilization,Zhejiang University,China。
文摘Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and biomass is predicted by thermodynamic and chemical kinetic calculations.Existence of solid minerals is evaluated by X-ray diffraction(XRD)analysis of ashes from pressure thermogravimetric combustion.Results indicate that a rise in pressure affects solid alkali minerals negligibly,but increases their contents in the liquid phase and decreases them in the gas phase,especially below 900℃.Thus,less KCl will condense on the boiler heat transfer surfaces leading to reduced corrosion.Increasing the blend ratio of biomass to coal will raise the content of potassium-based minerals but reduce the sodium-based ones.The alkali-associated slagging in the boiler can be minimized by the synergistic effect of co-combustion of sulphur-rich coal and potassium-rich biomass,forming stable solid K2SO4 at typical fluidized bed combustion temperatures.Kinetics modelling based on reaction mechanisms shows that oxidation of SO2 to SO3 plays a major role in K2SO4 formation but that the contribution of this oxidation decreases with increase in pressure.