期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Arbuscular mycorrhizal fungi reduce ammonia emissions under different land-use types in agro-pastoral areas
1
作者 Huaisong WANG Rui GUO +8 位作者 Yibo TIAN Nan CUI Xinxin WANG Lei WANG zhongbao yang Shuying LI Jixun GUO Lianxuan SHI Tao ZHANG 《Pedosphere》 SCIE CAS CSCD 2024年第2期497-507,共11页
Ammonia(NH3)emissions,the most important nitrogen(N)loss form,always induce a series of environmental problems such as increased frequency of regional haze pollution,accelerated N deposition,and N eutrophication.Arbus... Ammonia(NH3)emissions,the most important nitrogen(N)loss form,always induce a series of environmental problems such as increased frequency of regional haze pollution,accelerated N deposition,and N eutrophication.Arbuscular mycorrhizal(AM)fungi play key roles in N cycling.However,it is still unclear whether AM fungi can alleviate N losses by reducing NH3emissions.The potential mechanisms by which AM fungi reduce NH_(3)emissions in five land-use types(grazed grassland,mowed grassland,fenced grassland,artificial alfalfa grassland,and cropland)were explored in this study.Results showed that AM fungal inoculation significantly reduced NH3emissions,and the mycorrhizal responses of NH3emissions were determined by land-use type.Structural equation modeling(SEM)showed that AM fungi and land-use type directly affected NH_(3)emissions.In addition,the reduction in NH_(3)emissions was largely driven by the decline in soil NH_(4)^(+)-N and pH and the increases in abundances of ammonia-oxidizing archaea(AOA)amoA and bacteria(AOB)amoB genes,urease activity,and plant N uptake induced by AM fungal inoculation and land-use type.The present results highlight that reducing the negative influence of agricultural intensification caused by land-use type changes on AM fungi should be considered to reduce N losses in agriculture and grassland ecosystems. 展开更多
关键词 agricultural intensification grassland management functional genes plant N uptake N leaching N loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部