期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Corrigendum to “Drivers of PM_(2.5)-O_(3) co-pollution: from the perspective of reactive nitrogen conversion pathways in atmospheric nitrogen cycling” [Sci. Bull. 67(18) (2022) 1833–1836]
1
作者 Feng Wang Weichao Wang +4 位作者 Zhenyu Wang zhongcheng zhang Yinchang Feng Armistead GRussell Guoliang Shi 《Science Bulletin》 SCIE EI CAS CSCD 2023年第3期351-351,共1页
The authors would like to correct Fig.1e,f.Due to our neglect when doing the picture layout of Fig.1,the abscissa in Fig.1e,f is error:the abscissa ranges from80 to 0 in Fig.1e and ranges from90 to20 in Fig.1f.The ... The authors would like to correct Fig.1e,f.Due to our neglect when doing the picture layout of Fig.1,the abscissa in Fig.1e,f is error:the abscissa ranges from80 to 0 in Fig.1e and ranges from90 to20 in Fig.1f.The image has been corrected:the abscissa ranges from80 to 80 in Fig.1e and ranges from80 to 80 in Fig.1f[1].We declare that this correction does not change the results or conclusions of this paper. 展开更多
关键词 CYCLING pollution correction
原文传递
Machine learning and theoretical analysis release the non-linear relationship among ozone,secondary organic aerosol and volatile organic compounds
2
作者 Feng Wang zhongcheng zhang +8 位作者 Gen Wang Zhenyu Wang Mei Li Weiqing Liang Jie Gao Wei Wang Da Chen Yinchang Feng Guoliang Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期75-84,共10页
Fine particulate matter(PM_(2.5))and ozone(O_(3))pollutions are prevalent air quality issues in China.Volatile organic compounds(VOCs)have significant impact on the formation of O_(3)and secondary organic aerosols(SOA... Fine particulate matter(PM_(2.5))and ozone(O_(3))pollutions are prevalent air quality issues in China.Volatile organic compounds(VOCs)have significant impact on the formation of O_(3)and secondary organic aerosols(SOA)contributing PM_(2.5).Herein,we investigated 54 VOCs,O_(3)and SOA in Tianjin from June 2017 to May 2019 to explore the non-linear relationship among O_(3),SOA and VOCs.The monthly patterns of VOCs and SOA concentrations were characterized by peak values during October to March and reached a minimum from April to September,but the observed O_(3)was exactly the opposite.Machine learning methods resolved the importance of individual VOCs on O_(3)and SOA that alkenes(mainly ethylene,propylene,and isoprene)have the highest importance to O_(3)formation;alkanes(C_(n),n≥6)and aromatics were the main source of SOA formation.Machine learning methods revealed and emphasized the importance of photochemical consumptions of VOCs to O_(3)and SOA formation.Ozone formation potential(OFP)and secondary organic aerosol formation potential(SOAFP)calculated by consumed VOCs quantitatively indicated that more than 80%of the consumed VOCs were alkenes which dominated the O_(3)formation,and the importance of consumed aromatics and alkenes to SOAFP were 40.84%and 56.65%,respectively.Therein,isoprene contributed the most to OFP at 41.45%regardless of the season,while aromatics(58.27%)contributed the most to SOAFP in winter.Collectively,our findings can provide scientific evidence on policymaking for VOCs controls on seasonal scales to achieve effective reduction in both SOA and O_(3). 展开更多
关键词 VOCs Machine learning Photochemical consumption Ozone formation potential Secondary organic aerosol formation potential
原文传递
从大气氮循环中活性氮转化途径的角度谈PM_(2.5)-O_(3)复合污染的驱动因素
3
作者 王丰 王卫超 +4 位作者 王振宇 张忠诚 冯银厂 Armistead G.Russell 史国良 《Science Bulletin》 SCIE EI CAS CSCD 2022年第18期1833-1836,共4页
Fine particulate matter(PM)and ozone(O),two globally signifcant air pollutants,have exerted substantial adverse impacts on climate and human health[1].From 2013 to 2020,China has achieved a signifcant decline of PMlev... Fine particulate matter(PM)and ozone(O),two globally signifcant air pollutants,have exerted substantial adverse impacts on climate and human health[1].From 2013 to 2020,China has achieved a signifcant decline of PMlevels,though O3pollution has deteriorated over time[2].PM-Oco-pollution includes not only both high levels of PMand O,but also high PMor Oeven when the other remain low.Therefore,the coordinated control of PMand Oshould not only focus on reducing high concentrations of PMand Osimultaneously. 展开更多
关键词 活性氮 转化途径 PM 驱动因素
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部