Cyclic symmetrical tension-compression fatigue tests in an axial plastic strain range of 2.0×10-4 to 1.5×10-3 were performed on three copper tetracrystal specimens containing two grain boundary triple lines ...Cyclic symmetrical tension-compression fatigue tests in an axial plastic strain range of 2.0×10-4 to 1.5×10-3 were performed on three copper tetracrystal specimens containing two grain boundary triple lines as well as one copper tricrystal specimen employing a multiple step method. Experimental results show that the strengthening effect of triple junction (TJ) on axial saturation stress increased with increasing plastic strain amplitude. The strengthening effects owe much to the strain incompatibilities at TJ. The cyclic stress-strain (CSS) curves of tetracrystals are higher than that of tricrystal. At low strain amplitude, deformation at TJ is smaller than that near grain boundary (GB), which results in that the width of TJ effect zone is smaller than that near GB. Whether GB split or not is associated with the angle between GB and loading axis, activation of slip systems beside GB and the accommodation and annihilation of residual dislocations on GB planes.展开更多
文摘Cyclic symmetrical tension-compression fatigue tests in an axial plastic strain range of 2.0×10-4 to 1.5×10-3 were performed on three copper tetracrystal specimens containing two grain boundary triple lines as well as one copper tricrystal specimen employing a multiple step method. Experimental results show that the strengthening effect of triple junction (TJ) on axial saturation stress increased with increasing plastic strain amplitude. The strengthening effects owe much to the strain incompatibilities at TJ. The cyclic stress-strain (CSS) curves of tetracrystals are higher than that of tricrystal. At low strain amplitude, deformation at TJ is smaller than that near grain boundary (GB), which results in that the width of TJ effect zone is smaller than that near GB. Whether GB split or not is associated with the angle between GB and loading axis, activation of slip systems beside GB and the accommodation and annihilation of residual dislocations on GB planes.