We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not ne...We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not need to be locked. Based on the Stark splitting of the Rb Rydberg state, 10D_(3/2), under electric fields and the corresponding calculated polarizabilities, the real electric field intensity is calculated using the difference in radio-frequency diffraction between two acousto-optic modulators, which acts as a frequency criterion that allows us to measure the electrical field without locking the coupling laser. The value measured by this simple method shows a good agreement with our previous work [Opt.Express 29 1558(2021)] where the frequency of the coupling laser needs to be locked with an additional EIT spectrum based on atom vapor and a proportional–integral–differential feedback circuit. Our presented method can also be extended to the measurement of electric field based on hot Rydberg atom vapor, which has application in industry.展开更多
Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by...Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by an ONFbased two-color optical lattice.At an optical depth of 7.35,90%transmission can be achieved by only 7.7 pW coupling power.The EIT peak and linewidth are investigated as a function of the coupling optical power.By modulating the pWlevel control beam of the ONF-EIT system in sequence,we further achieve efficient and high contrast control of the probe transmission,as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.展开更多
We report the experimental realization of dark state atoms trapping in a nanofiber optical lattice.By applying the magicwavelength trapping potentials of cesium atoms,the AC Stark shifts are strongly suppressed.The da...We report the experimental realization of dark state atoms trapping in a nanofiber optical lattice.By applying the magicwavelength trapping potentials of cesium atoms,the AC Stark shifts are strongly suppressed.The dark magneto-optical trap efficiently transfers the cold atoms from bright (6S_(1/2),F=4) into dark state (6S_(1/2),F=3) for hyperfine energy levels of cesium atoms.The observed transfer efficiency is as high as 98%via saturation measurement.The trapping lifetime of dark state atoms trapped by a nanofiber optical lattice is also investigated,which is the key element for realizing optical storage.This work contributes to the manipulation of atomic electric dipole spin waves and quantum information storage for fiber networks.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074231, 12274272, and 61827824)Science and technology innovation plan of colleges and universities in Shanxi Province (Grant No. 2021L313)+2 种基金Science and Technology Project of State Grid (Grant No. 5700-202127198A-0-0-00)Fundamental Research Program of Shanxi Province (Grant No. 202203021222204)Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant Nos. 20222008 and 20222132)。
文摘We demonstrate a simple method to measure electric field intensity by using doublet electromagnetically induced transparency(EIT) spectra of cold Rb Rydberg atoms, where the frequency of the coupling laser does not need to be locked. Based on the Stark splitting of the Rb Rydberg state, 10D_(3/2), under electric fields and the corresponding calculated polarizabilities, the real electric field intensity is calculated using the difference in radio-frequency diffraction between two acousto-optic modulators, which acts as a frequency criterion that allows us to measure the electrical field without locking the coupling laser. The value measured by this simple method shows a good agreement with our previous work [Opt.Express 29 1558(2021)] where the frequency of the coupling laser needs to be locked with an additional EIT spectrum based on atom vapor and a proportional–integral–differential feedback circuit. Our presented method can also be extended to the measurement of electric field based on hot Rydberg atom vapor, which has application in industry.
基金supported by State Grid science and Technology Project(Grant No.5700-202127198A-0-0-00)。
文摘Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by an ONFbased two-color optical lattice.At an optical depth of 7.35,90%transmission can be achieved by only 7.7 pW coupling power.The EIT peak and linewidth are investigated as a function of the coupling optical power.By modulating the pWlevel control beam of the ONF-EIT system in sequence,we further achieve efficient and high contrast control of the probe transmission,as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFA0304203)National Natural Science Foundation of China(Nos.6210031464,61875110,12034012,and 12074231)+4 种基金NSFC Project for Excellent Research Team(No.61121064)“1331 KSC”,PCSIRT(No.IRT_17R70)National Time Service Center(NTSC)of the Chinese Academy of Sciences(CAS)(No.2009DP173082)State Key Laboratory of Surface Physics,Fudan University(No.KF2020_01)111 Project(No.D18001).
文摘We report the experimental realization of dark state atoms trapping in a nanofiber optical lattice.By applying the magicwavelength trapping potentials of cesium atoms,the AC Stark shifts are strongly suppressed.The dark magneto-optical trap efficiently transfers the cold atoms from bright (6S_(1/2),F=4) into dark state (6S_(1/2),F=3) for hyperfine energy levels of cesium atoms.The observed transfer efficiency is as high as 98%via saturation measurement.The trapping lifetime of dark state atoms trapped by a nanofiber optical lattice is also investigated,which is the key element for realizing optical storage.This work contributes to the manipulation of atomic electric dipole spin waves and quantum information storage for fiber networks.