This paper studies the problem of fixed-time output consensus tracking for high-order multi-agent systems(MASs)with directed network topology with consideration of data packet dropout.First,a predictive compensation b...This paper studies the problem of fixed-time output consensus tracking for high-order multi-agent systems(MASs)with directed network topology with consideration of data packet dropout.First,a predictive compensation based distributed observer is presented to compensate for packet dropout and estimate the leader’s states.Next,stability analysis is conducted to prove fixed time convergence of the developed distributed observer.Then,adaptive fixed-time dynamic surface control is designed to counteract mismatched disturbances introduced by observation error,and stabilize the tracking error system within a fixed time,which overcomes explosion of complexity problem and singularity problem.Finally,simulation results are provided to verify the effectiveness and superiority of the consensus tracking strategy proposed.The contribution of this paper is to provide a fixed-time distributed observer design method for high-order MAS under directed graph subject to packet dropout,and a novel fixed-time control strategy which can handle mismatched disturbances and overcome explosion of complexity and singularity problem.展开更多
In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose tran...In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.展开更多
BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter- 1 (GLUT 1) i...BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter- 1 (GLUT 1) in rats, OBJECTIVE: This study was designed to investigate the feasibility of generating recombinant replication-defective adenoviral vectors that express GLUT1 in rats by in vitro ligation based on the Adeno-X^TM system. DESIGN: An in vitro cell-based experiment. SETTING: This study was performed at the Linbaixin Medical Research Center of the Second Hospital Affiliated to Sun Yat-sen University and Central Laboratory for Prevention and Treatment of Tumor, Sun Yat-sen University between January and August 2004. MATERIALS: Male, adult, Sprague Dawley rats were used to extract total RNA from brain tissue. E. coli DH5 a and human embryonic kidney 293 cells (HEK293 cells) used in the present study were cryo-preserved by the Second Hospital Affiliated to Sun Yat-sen University. Rabbit anti-rat GLUT1 polyclonal antibody (Chemicon, U.S.A.) and primers (Shanghai Boya Bioengineering Co., Ltd) were also used. METHODS: E1/E3-deleted replication-defective adenoviral vectors were used. Using in vitro ligation, the target gene was first sub-cloned into a shuttle vector plasmid to obtain the fragment containing target gene expression cassettes by enzyme digestion. Subsequently, the fragment was co-transformed with linearized adenoviral backbone vector into the E. coli strain. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly recombinant adenoviral vectors with replication capabilities. The procedure was repeated several times for recombinant adenoviral vectors amplification. MAIN OUTCOME MEASURES: Efficiency of recombinant adenoviral vectors to express the target gene was measured by gene and protein expression through polymerase chain reaction and Western Blot assays, respectively. RESULTS: Results demonstrated that recombinant adenoviral vectors successfully expressed GLUT1 protein, with a relative molecular mass of 55000 in HEK293 cells. These results suggest that recombinant adenoviral vectors obtained by homologous bacterial recombination feature high efficiency, rapidness, and simplicity. CONCLUSION: We successfully amplified the rat GLUT1 gene and constructed replication-defective adenoviral vectors expressing GLUT1. The replication-defective adenoviral vectors proved to successfully express the target gene in HEK293 cells.展开更多
Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,inclu...Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,including the regulation of lymph absorption and transport,the orchestration of immune surveillance and responses.Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks.Lymphangiogenesis,as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins,is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo.However,abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases.Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis,to further modulate the progression of diseases.Actually,an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation.Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis,but improves the efficacy of diverse treatments.In conclusion,we present a comprehensive overview of lymphatic vessel development and physiological functions,and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases.Moreover,we summarize the targeting therapeutic values of abnormal lymphangiogenesis,providing novel perspectives for treatment strategy of multiple human diseases.展开更多
With exceptional capacity during high-voltage cycling,P3-type Nadeficient layered oxide cathodes have captured substantial attention.Nevertheless,they are plagued by severe capacity degradation over cycling.In this st...With exceptional capacity during high-voltage cycling,P3-type Nadeficient layered oxide cathodes have captured substantial attention.Nevertheless,they are plagued by severe capacity degradation over cycling.In this study,tuning and optimizing the phase composition in layered oxides through Li incorporation are proposed to enhance the high-voltage stability.The structural dependence of layered Na_(2/3)LixNi_(0.25)Mn_(0.75)O_(2)þδoxides on the lithium content(0.0≤x≤1.0)offered during synthesis is investigated systematically on an atomic scale.Surprisingly,increasing the Li content triggers the formation of mixed P2/O3-type or P3/P2/O3-type layered phases.As the voltage window is 1.5-4.5 V,P3-type Na2/3Ni_(0.25)Mn_(0.75)O_(2)(NL0.0NMO,R3m)material exhibits a sequence of phase transformations throughout the process of(de)sodiation,that is,O3⇌P3⇌O30⇌O3″.Such complicated phase transitions can be effectively suppressed in the Na2/3Li_(0.7)Ni_(0.25)Mn_(0.75)O_(2.4)(NL_(0.7)NMO)oxide with P2/P3/O3-type mixed phases.Consequently,cathodes made of NL0.7NMO exhibit a substantially enhanced cyclic performance at high voltages compared to that of the P3-type layered NL0.0NMO cathode.Specifically,NL0.7NMO demonstrates an outstanding capacity retention of 98%after 10 cycles at 1 C within 1.5-4.5 V,much higher than that of NL0.0NMO(83%).This work delves into the intricate realm of bolstering the high-voltage durability of layered oxide cathodes,paving the way for advanced sodium-ion battery technologies.展开更多
To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic s...To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic solvent of ZnCl_(2)/ethylene glycol solution.The route can proceed at room temperature and the reaction time needed is shortened to be 30 min,which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time.The formation mechanism of the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes in deep eutectic solvent(DES)was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique.The mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.展开更多
Synchrotron radiation based combined technique can provide multiple structural information simultaneously,which is an important development direction of structural detection.In this study,a novel small-angle X-ray sca...Synchrotron radiation based combined technique can provide multiple structural information simultaneously,which is an important development direction of structural detection.In this study,a novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure(SAXS/XRD/XAFS)combined setup was constructed,where an area detector,a curved detector,and a point detector are,respectively,used for the measurements of SAXS,XRD,and XAFS signals.A detailed description about the combined setup was given.A minitype diamond detector coupled to a SAXS beamstop was used to record the transmitted X-ray intensity,making the scattering(SAXS and XRD)signal measurement compatible with the absorption(XAFS)signal measurement,avoiding mechanical switching.The two-way sampling strategy was used to acquire XAFS signals,shortening the non-counting time.The two-way and one-way sampling strategies were discussed.High-frequency sampling scheme was used to collect experimental signals,improving the measurement efficiency and signal-to-noise ratio.A detailed description and discussion about the high-frequency scheme were also given in this paper.Except the rotation of monochromator,there is no mechanical movement in measurements,time resolution may reach the level of seconds.Using this SAXS/XRD/XAFS combined setup,SAXS,XRD,and XAFS signals can be acquired simultaneously.With some in-situ sample environment system,the newlydeveloped combined technique can be used to track the structure evolution in complex fluids.During the formation processes of(BiO)2CO3 and ZnAPO-34 particles,the changes of in-situ experimental data with reaction time demonstrate that SAXS/XRD/XAFS combined technique is feasible to track the dynamic process.展开更多
Rapid synthesis of metal–organic frameworks(MOFs),especially high-valence MOFs at roomtemperature without external energy,is a challenging topic.In this work,a stable radical solution has been discovered.Various MOFs...Rapid synthesis of metal–organic frameworks(MOFs),especially high-valence MOFs at roomtemperature without external energy,is a challenging topic.In this work,a stable radical solution has been discovered.Various MOFs with versatile metal nodes and ligands were rapidly synthesized at room temperature in the absence of external energy.Especially,MOFs with conjugated ligands achieved instantaneous architecture(in less than 1 s)and quantitative yield.Radicals in the solution play a crucial role in the accelerated kinetics,and the new radical route paves a cyclic pathway for the MOF synthesis.The mechanism has been thoroughly investigated by electron paramagnetic resonance,in situ proton nuclear magnetic resonance,X-ray absorption spectra,in situ small-angle X-ray scattering-wide-angle X-ray scattering,and density functional theory calculations.展开更多
Gastric cancer(GC)is known as a top malignant type of tumors worldwide.Despite the recent decrease in mortality rates,the prognosis remains poor.Therefore,it is necessary to find novel biomarkers with early diagnostic...Gastric cancer(GC)is known as a top malignant type of tumors worldwide.Despite the recent decrease in mortality rates,the prognosis remains poor.Therefore,it is necessary to find novel biomarkers with early diagnostic value for GC.In this study,we present a large-scale proteomic analysis of 30 GC tissues and 30 matched healthy tissues using label-free global proteome profiling.Our results identified 537 differentially expressed proteins,including 280 upregulated and 257 downregulated proteins.The ingenuity pathway analysis(IPA)results indicated that the sirtuin signaling pathway was the most activated pathway in GC tissues whereas oxidative phosphorylation was the most inhibited.Moreover,the most activated molecular function was cellular movement,including tissue invasion by tumor cell lines.Based on IPA results,15 hub proteins were screened.Using the receiver operating characteristic curve,most of hub proteins showed a high diagnostic power in distinguishing between tumors and healthy controls.A four-protein(ATP5B-ATP5O-NDUFB4-NDUFB8)diagnostic signature was built using a random forest model.The area under the curve(AUC)values of this model were 0.996 and 0.886 for the training and testing sets,respectively,suggesting that the four-protein signature has a high diagnostic power.This signature was further tested with independent datasets using plasma enzyme-linked immune sorbent assays,resulting in an AUC value of 0.778 for distinguishing GC tissues from healthy controls,and using immunohistochemical tissue microarray analysis,resulting in an AUC value of 0.805.In conclusion,this study identifies potential biomarkers and improves our understanding of the pathogenesis,providing novel therapeutic targets for GC.展开更多
A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-prof...A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/rain. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.展开更多
Introduction Nanofiber orientation in suspensions determines the performance of nanoparticle suspensions which have potential applications in intelligent control.Material and method Na2Ti3O7 nanofibers were prepared w...Introduction Nanofiber orientation in suspensions determines the performance of nanoparticle suspensions which have potential applications in intelligent control.Material and method Na2Ti3O7 nanofibers were prepared with a hydrothermal method.The orientation degree of Na2Ti3O7 nanofibers in silicone oil has been studied by in situ small-angle X-ray scattering technique.Thünemann–Ruland method was used to extract the distribution widths of Na2Ti3O7 nanofibers in the suspensions.Conclution An empirical formula has been proposed to describe the dependence of nanofiber orientation degree on the external electric-field strength(E)and the nanofiber concentration(C).The results demonstrate that the response of nanofiber orientation to the electric field can be divided into exponential and linear stages before and after the inflection point of electric-field strength(Ec0.09 kV/mm).Low concentration of suspension is more sensitive to the external electric field.The increase in nanofiber concentration will decrease the response sensitivity of nanofiber orientation degree to the change of E.The critical concentration of Na2Ti3O7 nanofibers in the suspension is about 5 wt%.This study is expected to give new clue for the structurally responsive mechanism of anisotropic nanoparticles in suspensions to electric-field strength and particle concentration.展开更多
K-ion batteries(KIBs)hold great promise for large-scale energy storage.However,the absence of suitable cathode materials limits their practical application.Meanwhile,rationally designing advanced cathode materials for...K-ion batteries(KIBs)hold great promise for large-scale energy storage.However,the absence of suitable cathode materials limits their practical application.Meanwhile,rationally designing advanced cathode materials for KIBs remains an open question.In this work,based on density functional theory calculations,we find that the bond stability of Fe–O is higher than that of Co–O in layered transitional metal(TM)oxides.Additionally,the K-ion migration in the Fe-based layered TM oxide has a significantly lower activation energy barrier than that in the Co-based one.Based on this theoretical prediction,we successfully synthesized a low-cost K_(0.45)Ni_(0.1)Fe_(0.1)Mn_(0.8)O_(2)cathode,which shows excellent structural stability and superior K-storage properties,including durable cycle life and high-rate capability.Moreover,the designed K_(0.45)Ni_(0.1)Fe_(0.1)Mn_(0.8)O_(2)cathode possesses a great full-cell performance with a discharge capacity of~75 mA h g^(-1) and capacity retention of~80%after 100 cycles.The results show that Fe has better structural stability and K-ion diffusion than high-cost Co in layered oxide cathodes,and this finding provides new insights into the design of low-cost and high-performance KIB layered cathodes.This work highlights the feasibility of a theory-guided experiment in screening promising battery materials.展开更多
OBJECTIVE: To investigate the relevance of the pituitary to liver syndromes and cancer by studying the pituitary transcriptome profile in liver cancer mice with different syndromes.METHODS: The quantitative four diagn...OBJECTIVE: To investigate the relevance of the pituitary to liver syndromes and cancer by studying the pituitary transcriptome profile in liver cancer mice with different syndromes.METHODS: The quantitative four diagnosis and syndrome differentiation methods were used to screen normal control mice without syndromes(NC), liver cancer mice with poisonous pathogenic factors syndrome(PPFS), and Qi deficiency syndrome mice(QDS). An Affymetrix Gene Chip MouseExon 1.0 ST Array was performed to detect the gene expression of different groups. Gene clustering was applied to analyze the gene expression patterns of the PPFS and QDS groups compared with the NC group. The transcriptional networks analysis tool, Fun Net, was used to enrich the biological categories of differentially expressed genes in the PPFS and QDS groups.RESULTS: Biological categories of differentially expressed genes showed that excessive metabolism and extracellular matrix interaction, insufficient communication of cells(especially nerve cells), and the bidirectional regulation of genetic information processing were enriched in both syndromes. However, the degree of excessive metabolism in the PPFS group was higher than that in the QDS group.The hyperfunction of cancer and infection, and the hypofunction of the nervous and endocrine systems were obvious in the QDS group.CONCLUSION: The pituitary plays an important role in the development of liver cancer and syndromes. This study further studied the role of the pituitary in the combination of disease and syndromes.展开更多
基金supported in part by the National Natural Science Foundation of China(61903302,61973252,61903126)the Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-035)+2 种基金the Fundamental Research Funds for the Central Universities(31020180QD076,ZDHXYKYYW201914)Key R&D and Promotion Projects in Henan Province(202102210130)Key Scientific Research Projects of Universities in Henan Province-20A590001。
文摘This paper studies the problem of fixed-time output consensus tracking for high-order multi-agent systems(MASs)with directed network topology with consideration of data packet dropout.First,a predictive compensation based distributed observer is presented to compensate for packet dropout and estimate the leader’s states.Next,stability analysis is conducted to prove fixed time convergence of the developed distributed observer.Then,adaptive fixed-time dynamic surface control is designed to counteract mismatched disturbances introduced by observation error,and stabilize the tracking error system within a fixed time,which overcomes explosion of complexity problem and singularity problem.Finally,simulation results are provided to verify the effectiveness and superiority of the consensus tracking strategy proposed.The contribution of this paper is to provide a fixed-time distributed observer design method for high-order MAS under directed graph subject to packet dropout,and a novel fixed-time control strategy which can handle mismatched disturbances and overcome explosion of complexity and singularity problem.
基金funded by the National Natural Science Foundation of China,No. 30770765
文摘In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.
基金the National Natural Science Foundation of China, No. 39900048the Natural Science Foundation of Guangdong Province, No.010721
文摘BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter- 1 (GLUT 1) in rats, OBJECTIVE: This study was designed to investigate the feasibility of generating recombinant replication-defective adenoviral vectors that express GLUT1 in rats by in vitro ligation based on the Adeno-X^TM system. DESIGN: An in vitro cell-based experiment. SETTING: This study was performed at the Linbaixin Medical Research Center of the Second Hospital Affiliated to Sun Yat-sen University and Central Laboratory for Prevention and Treatment of Tumor, Sun Yat-sen University between January and August 2004. MATERIALS: Male, adult, Sprague Dawley rats were used to extract total RNA from brain tissue. E. coli DH5 a and human embryonic kidney 293 cells (HEK293 cells) used in the present study were cryo-preserved by the Second Hospital Affiliated to Sun Yat-sen University. Rabbit anti-rat GLUT1 polyclonal antibody (Chemicon, U.S.A.) and primers (Shanghai Boya Bioengineering Co., Ltd) were also used. METHODS: E1/E3-deleted replication-defective adenoviral vectors were used. Using in vitro ligation, the target gene was first sub-cloned into a shuttle vector plasmid to obtain the fragment containing target gene expression cassettes by enzyme digestion. Subsequently, the fragment was co-transformed with linearized adenoviral backbone vector into the E. coli strain. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly recombinant adenoviral vectors with replication capabilities. The procedure was repeated several times for recombinant adenoviral vectors amplification. MAIN OUTCOME MEASURES: Efficiency of recombinant adenoviral vectors to express the target gene was measured by gene and protein expression through polymerase chain reaction and Western Blot assays, respectively. RESULTS: Results demonstrated that recombinant adenoviral vectors successfully expressed GLUT1 protein, with a relative molecular mass of 55000 in HEK293 cells. These results suggest that recombinant adenoviral vectors obtained by homologous bacterial recombination feature high efficiency, rapidness, and simplicity. CONCLUSION: We successfully amplified the rat GLUT1 gene and constructed replication-defective adenoviral vectors expressing GLUT1. The replication-defective adenoviral vectors proved to successfully express the target gene in HEK293 cells.
基金supported by the National Natural Science Foundation of China(U22A20324,82202927)Excellent Youth Foundation of Liaoning Province(2022-YQ-15).
文摘Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,including the regulation of lymph absorption and transport,the orchestration of immune surveillance and responses.Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks.Lymphangiogenesis,as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins,is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo.However,abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases.Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis,to further modulate the progression of diseases.Actually,an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation.Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis,but improves the efficacy of diverse treatments.In conclusion,we present a comprehensive overview of lymphatic vessel development and physiological functions,and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases.Moreover,we summarize the targeting therapeutic values of abnormal lymphangiogenesis,providing novel perspectives for treatment strategy of multiple human diseases.
基金Distinguished Young Foundation of Sichuan Province,Grant/Award Number:2020JDJQ0027National Natural Science Foundation of China,Grant/Award Numbers:22108218,20A20145,21878195+2 种基金German Research Foundation,Grant/Award Number:390874152“Young Talent Support Plan”of Xi'an Jiaotong University,Grant/Award Number:HG6J016Qinchuangyuan Innovative Talent Project,Grant/Award Number:QCYRCXM-2022-137。
文摘With exceptional capacity during high-voltage cycling,P3-type Nadeficient layered oxide cathodes have captured substantial attention.Nevertheless,they are plagued by severe capacity degradation over cycling.In this study,tuning and optimizing the phase composition in layered oxides through Li incorporation are proposed to enhance the high-voltage stability.The structural dependence of layered Na_(2/3)LixNi_(0.25)Mn_(0.75)O_(2)þδoxides on the lithium content(0.0≤x≤1.0)offered during synthesis is investigated systematically on an atomic scale.Surprisingly,increasing the Li content triggers the formation of mixed P2/O3-type or P3/P2/O3-type layered phases.As the voltage window is 1.5-4.5 V,P3-type Na2/3Ni_(0.25)Mn_(0.75)O_(2)(NL0.0NMO,R3m)material exhibits a sequence of phase transformations throughout the process of(de)sodiation,that is,O3⇌P3⇌O30⇌O3″.Such complicated phase transitions can be effectively suppressed in the Na2/3Li_(0.7)Ni_(0.25)Mn_(0.75)O_(2.4)(NL_(0.7)NMO)oxide with P2/P3/O3-type mixed phases.Consequently,cathodes made of NL0.7NMO exhibit a substantially enhanced cyclic performance at high voltages compared to that of the P3-type layered NL0.0NMO cathode.Specifically,NL0.7NMO demonstrates an outstanding capacity retention of 98%after 10 cycles at 1 C within 1.5-4.5 V,much higher than that of NL0.0NMO(83%).This work delves into the intricate realm of bolstering the high-voltage durability of layered oxide cathodes,paving the way for advanced sodium-ion battery technologies.
基金support by Ministry of Science and Technology of China(No.2017YFA0403003)the National Natural Science Foundation of China(Nos.22033009 and 22121002).
文摘To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic solvent of ZnCl_(2)/ethylene glycol solution.The route can proceed at room temperature and the reaction time needed is shortened to be 30 min,which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time.The formation mechanism of the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes in deep eutectic solvent(DES)was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique.The mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0403000 and 2017YFA0403100).
文摘Synchrotron radiation based combined technique can provide multiple structural information simultaneously,which is an important development direction of structural detection.In this study,a novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure(SAXS/XRD/XAFS)combined setup was constructed,where an area detector,a curved detector,and a point detector are,respectively,used for the measurements of SAXS,XRD,and XAFS signals.A detailed description about the combined setup was given.A minitype diamond detector coupled to a SAXS beamstop was used to record the transmitted X-ray intensity,making the scattering(SAXS and XRD)signal measurement compatible with the absorption(XAFS)signal measurement,avoiding mechanical switching.The two-way sampling strategy was used to acquire XAFS signals,shortening the non-counting time.The two-way and one-way sampling strategies were discussed.High-frequency sampling scheme was used to collect experimental signals,improving the measurement efficiency and signal-to-noise ratio.A detailed description and discussion about the high-frequency scheme were also given in this paper.Except the rotation of monochromator,there is no mechanical movement in measurements,time resolution may reach the level of seconds.Using this SAXS/XRD/XAFS combined setup,SAXS,XRD,and XAFS signals can be acquired simultaneously.With some in-situ sample environment system,the newlydeveloped combined technique can be used to track the structure evolution in complex fluids.During the formation processes of(BiO)2CO3 and ZnAPO-34 particles,the changes of in-situ experimental data with reaction time demonstrate that SAXS/XRD/XAFS combined technique is feasible to track the dynamic process.
基金The authors thank the National Natural Science Foundation of China(grant no.22073104)the Beijing Natural Science Foundation(grant no.2222043)+3 种基金the National Key Research and Development Program of China(grant nos.2017YFA0403101,2017YFA0403003,and 2017YFA0403102)the National Natural Science Foundation of China(grant nos.21890761,21733011,and 21533011)the Beijing Municipal Science&Technology Commission(grant no.Z191100007219009)the Chinese Academy of Sciences(grant no.QYZDY-SSWSLH013).The XAS(1W1B)and SAXS(1W2A)measurements were performed at the Beijing Synchrotron Radiation Facility,China.
文摘Rapid synthesis of metal–organic frameworks(MOFs),especially high-valence MOFs at roomtemperature without external energy,is a challenging topic.In this work,a stable radical solution has been discovered.Various MOFs with versatile metal nodes and ligands were rapidly synthesized at room temperature in the absence of external energy.Especially,MOFs with conjugated ligands achieved instantaneous architecture(in less than 1 s)and quantitative yield.Radicals in the solution play a crucial role in the accelerated kinetics,and the new radical route paves a cyclic pathway for the MOF synthesis.The mechanism has been thoroughly investigated by electron paramagnetic resonance,in situ proton nuclear magnetic resonance,X-ray absorption spectra,in situ small-angle X-ray scattering-wide-angle X-ray scattering,and density functional theory calculations.
基金This work was supported by the National Key R&D Program of China(Grant Nos.MOST-2017YFC0908300 and MOST2017YFC0908305)the National Science Foundation of China(Grant No.81872031)+1 种基金the Natural Science Foundation of Liaoning Province,China(Grant No.20180550582)the Song Y et al/Diagnostic Biomarkers in Gastric Cancer 693 Project of Science and Technology of Shenyang,China(Grant No.18-014-4-07).
文摘Gastric cancer(GC)is known as a top malignant type of tumors worldwide.Despite the recent decrease in mortality rates,the prognosis remains poor.Therefore,it is necessary to find novel biomarkers with early diagnostic value for GC.In this study,we present a large-scale proteomic analysis of 30 GC tissues and 30 matched healthy tissues using label-free global proteome profiling.Our results identified 537 differentially expressed proteins,including 280 upregulated and 257 downregulated proteins.The ingenuity pathway analysis(IPA)results indicated that the sirtuin signaling pathway was the most activated pathway in GC tissues whereas oxidative phosphorylation was the most inhibited.Moreover,the most activated molecular function was cellular movement,including tissue invasion by tumor cell lines.Based on IPA results,15 hub proteins were screened.Using the receiver operating characteristic curve,most of hub proteins showed a high diagnostic power in distinguishing between tumors and healthy controls.A four-protein(ATP5B-ATP5O-NDUFB4-NDUFB8)diagnostic signature was built using a random forest model.The area under the curve(AUC)values of this model were 0.996 and 0.886 for the training and testing sets,respectively,suggesting that the four-protein signature has a high diagnostic power.This signature was further tested with independent datasets using plasma enzyme-linked immune sorbent assays,resulting in an AUC value of 0.778 for distinguishing GC tissues from healthy controls,and using immunohistochemical tissue microarray analysis,resulting in an AUC value of 0.805.In conclusion,this study identifies potential biomarkers and improves our understanding of the pathogenesis,providing novel therapeutic targets for GC.
基金supported by the National Natural Science Foundationof China(Grant Nos.U1232203,U1432104,11405199,11305198 and U1332107)the special fund on repairing infrastructure and purchasing fixed assets of Ministry of Finance of China
文摘A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/rain. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.
基金the Ministry of Science and Technology of China(Grant No.2017YFA0403000)the National Natural Science Foundation of China(Grant No.11405199).
文摘Introduction Nanofiber orientation in suspensions determines the performance of nanoparticle suspensions which have potential applications in intelligent control.Material and method Na2Ti3O7 nanofibers were prepared with a hydrothermal method.The orientation degree of Na2Ti3O7 nanofibers in silicone oil has been studied by in situ small-angle X-ray scattering technique.Thünemann–Ruland method was used to extract the distribution widths of Na2Ti3O7 nanofibers in the suspensions.Conclution An empirical formula has been proposed to describe the dependence of nanofiber orientation degree on the external electric-field strength(E)and the nanofiber concentration(C).The results demonstrate that the response of nanofiber orientation to the electric field can be divided into exponential and linear stages before and after the inflection point of electric-field strength(Ec0.09 kV/mm).Low concentration of suspension is more sensitive to the external electric field.The increase in nanofiber concentration will decrease the response sensitivity of nanofiber orientation degree to the change of E.The critical concentration of Na2Ti3O7 nanofibers in the suspension is about 5 wt%.This study is expected to give new clue for the structurally responsive mechanism of anisotropic nanoparticles in suspensions to electric-field strength and particle concentration.
基金supported by the Fundamental Research Funds for the Central Universities and the Scientific Instrument Developing Project of the Chinese Academy of Sciences(ZDKYYQ20170001)。
文摘K-ion batteries(KIBs)hold great promise for large-scale energy storage.However,the absence of suitable cathode materials limits their practical application.Meanwhile,rationally designing advanced cathode materials for KIBs remains an open question.In this work,based on density functional theory calculations,we find that the bond stability of Fe–O is higher than that of Co–O in layered transitional metal(TM)oxides.Additionally,the K-ion migration in the Fe-based layered TM oxide has a significantly lower activation energy barrier than that in the Co-based one.Based on this theoretical prediction,we successfully synthesized a low-cost K_(0.45)Ni_(0.1)Fe_(0.1)Mn_(0.8)O_(2)cathode,which shows excellent structural stability and superior K-storage properties,including durable cycle life and high-rate capability.Moreover,the designed K_(0.45)Ni_(0.1)Fe_(0.1)Mn_(0.8)O_(2)cathode possesses a great full-cell performance with a discharge capacity of~75 mA h g^(-1) and capacity retention of~80%after 100 cycles.The results show that Fe has better structural stability and K-ion diffusion than high-cost Co in layered oxide cathodes,and this finding provides new insights into the design of low-cost and high-performance KIB layered cathodes.This work highlights the feasibility of a theory-guided experiment in screening promising battery materials.
基金Study of Key Technologies to Make Animal Models Combined with Diseases and Syndromes Based on the Combination of Animal Presentations and Biology Characteristics from the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2009ZX09502-018)Effect of CRH on Abnormal ACTH Express in Pituitary of Liver Cancer Mice with Different Syndromes of Shanghai Municipal Education Commissionn(No.2011JW02)
文摘OBJECTIVE: To investigate the relevance of the pituitary to liver syndromes and cancer by studying the pituitary transcriptome profile in liver cancer mice with different syndromes.METHODS: The quantitative four diagnosis and syndrome differentiation methods were used to screen normal control mice without syndromes(NC), liver cancer mice with poisonous pathogenic factors syndrome(PPFS), and Qi deficiency syndrome mice(QDS). An Affymetrix Gene Chip MouseExon 1.0 ST Array was performed to detect the gene expression of different groups. Gene clustering was applied to analyze the gene expression patterns of the PPFS and QDS groups compared with the NC group. The transcriptional networks analysis tool, Fun Net, was used to enrich the biological categories of differentially expressed genes in the PPFS and QDS groups.RESULTS: Biological categories of differentially expressed genes showed that excessive metabolism and extracellular matrix interaction, insufficient communication of cells(especially nerve cells), and the bidirectional regulation of genetic information processing were enriched in both syndromes. However, the degree of excessive metabolism in the PPFS group was higher than that in the QDS group.The hyperfunction of cancer and infection, and the hypofunction of the nervous and endocrine systems were obvious in the QDS group.CONCLUSION: The pituitary plays an important role in the development of liver cancer and syndromes. This study further studied the role of the pituitary in the combination of disease and syndromes.