With the deep integration of electrochemical research with energy,environment,catalysis,and other fields,more and more new electrochemical catalytic reactions have entered our research field.Alloy catalysts have recen...With the deep integration of electrochemical research with energy,environment,catalysis,and other fields,more and more new electrochemical catalytic reactions have entered our research field.Alloy catalysts have recently emerged as a new type of nanomaterial due to the rapid development of kinetic controlled synthesis technology.These materials offer several advantages over monometallic catalysts,including larger element combinations,complex geometries,bifunctional sites,and reduced use of precious metals.This paper provides a review of alloy electrocatalysts that are designed and prepared specifically for electrocatalytic applications.The use of alloy materials in electrocatalyst design is also discussed,highlighting their widespread application in this field.First,various synthesis methods and synthesis mechanisms are systematically summarized.Following that,by correlating the properties of materials with the structure,relevant strategies toward advanced alloy electrocatalysts including composition regulation,size,morphology,surface engineering,defect engineering,interface engineering and strain engineering are classified.In addition,the important electrocatalytic applications and mechanisms of alloy electrocatalysts are described and summarized.Finally,the current challenges and prospects regarding the development of alloy nanomaterials are proposed.This review serves as a springboard from a fundamental understanding of alloy structural dynamics to design and various applications of electrocatalysts,particularly in energy and environmental sustainability.展开更多
基金supported by the National Natural Science Foundation of China(No.52072153)the Postdoctoral Science Foundation of China(No.2021M690023)+2 种基金the Postdoctoral Science Foundation of Jiangsu Province(No.2021K176B)the Graduate Research Innovation Program of Jiangsu Provincial(Nos.KYCX22_3694 and KYCX23_3649)the Zhenjiang Key R&D Programmes(No.SH2021021)。
文摘With the deep integration of electrochemical research with energy,environment,catalysis,and other fields,more and more new electrochemical catalytic reactions have entered our research field.Alloy catalysts have recently emerged as a new type of nanomaterial due to the rapid development of kinetic controlled synthesis technology.These materials offer several advantages over monometallic catalysts,including larger element combinations,complex geometries,bifunctional sites,and reduced use of precious metals.This paper provides a review of alloy electrocatalysts that are designed and prepared specifically for electrocatalytic applications.The use of alloy materials in electrocatalyst design is also discussed,highlighting their widespread application in this field.First,various synthesis methods and synthesis mechanisms are systematically summarized.Following that,by correlating the properties of materials with the structure,relevant strategies toward advanced alloy electrocatalysts including composition regulation,size,morphology,surface engineering,defect engineering,interface engineering and strain engineering are classified.In addition,the important electrocatalytic applications and mechanisms of alloy electrocatalysts are described and summarized.Finally,the current challenges and prospects regarding the development of alloy nanomaterials are proposed.This review serves as a springboard from a fundamental understanding of alloy structural dynamics to design and various applications of electrocatalysts,particularly in energy and environmental sustainability.