Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
To evaluate the validity of cloud top height (CTH) retrievals from FY-4A, the first of China's next-generation geostationary meteorological satellite series, the retrievals are compared to those from Himawari-8, C...To evaluate the validity of cloud top height (CTH) retrievals from FY-4A, the first of China's next-generation geostationary meteorological satellite series, the retrievals are compared to those from Himawari-8, CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Moderate Resolution Imaging Spectroradiometer (MODIS) operational products from August to October 2017. Regarding CTHs from CloudSat, CALIPSO, and MODIS as truth, the results show that the performance of FY-4A CTH retrievals is similar to that of Himawari-8. Both FY-4A and Himawari-8 retrieve reasonable CTH values for single-layer clouds, but perform poorly for multi-layer clouds. The mean bias error (MBE) shows that the mean value of FY-4A CTH retrievals is smaller than that of Himawari-8 for single-layer clouds but larger for multi-layer clouds. For ice crystal clouds, both FY-4A and Himawari-8 obtain the underestimated CTHs. However, there is a tendency for FY-4A and Himawari-8 to overestimate the CTH values of CloudSat and CALIPSO mainly for low level liquid water clouds. The temperature inversion near the tops of water clouds may result in an overestimation of CTHs. According to the MBE change with altitude, FY-4A and Himawari-8 overestimate the CTHs mainly for clouds below 3 km, and the overestimation is slightly more apparent in Himawari-8 data than that in FY-4A values. As the cloud optical thickness (COT) increases, the CTH bias of FY-4A CTH retrievals gradually decreases. Two typical cases are analyzed to illustrate the differences between different satellites' CTH retrievals in detail.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金Supported by the National Natural Science Foundation of China(41705007 and 41575028)
文摘To evaluate the validity of cloud top height (CTH) retrievals from FY-4A, the first of China's next-generation geostationary meteorological satellite series, the retrievals are compared to those from Himawari-8, CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Moderate Resolution Imaging Spectroradiometer (MODIS) operational products from August to October 2017. Regarding CTHs from CloudSat, CALIPSO, and MODIS as truth, the results show that the performance of FY-4A CTH retrievals is similar to that of Himawari-8. Both FY-4A and Himawari-8 retrieve reasonable CTH values for single-layer clouds, but perform poorly for multi-layer clouds. The mean bias error (MBE) shows that the mean value of FY-4A CTH retrievals is smaller than that of Himawari-8 for single-layer clouds but larger for multi-layer clouds. For ice crystal clouds, both FY-4A and Himawari-8 obtain the underestimated CTHs. However, there is a tendency for FY-4A and Himawari-8 to overestimate the CTH values of CloudSat and CALIPSO mainly for low level liquid water clouds. The temperature inversion near the tops of water clouds may result in an overestimation of CTHs. According to the MBE change with altitude, FY-4A and Himawari-8 overestimate the CTHs mainly for clouds below 3 km, and the overestimation is slightly more apparent in Himawari-8 data than that in FY-4A values. As the cloud optical thickness (COT) increases, the CTH bias of FY-4A CTH retrievals gradually decreases. Two typical cases are analyzed to illustrate the differences between different satellites' CTH retrievals in detail.