This paper introduces the characteristics of the education mode of O2O, and clarifies the shortcomings of the training of network engineering and information security professionals. Later Anhui Institute of Informatio...This paper introduces the characteristics of the education mode of O2O, and clarifies the shortcomings of the training of network engineering and information security professionals. Later Anhui Institute of Information Engineering puts forward the theory of O2O education in network engineering and information security professionals, and lastly discusses the detailed plan and implementation of the education model of O2O in detail. This model has achieved good results.展开更多
Skin tissue is a kind of complex biological material abundant with fibers.A new constitutive model,relating macroscopic responses with microstructural fiber configuration alteration,is developed to investigate the str...Skin tissue is a kind of complex biological material abundant with fibers.A new constitutive model,relating macroscopic responses with microstructural fiber configuration alteration,is developed to investigate the stress softening behaviors of skin tissue observed during cyclic loading-unloading tests.Two influential factors are introduced to describe the impact of fiber configuration change and stretch-induced damage.The present model achieves good agreement between predicted stress distribution of human skin and corresponding ex vivo experimental data obtained from the literature,affirming its capability to effectively capture the characteristic softening behaviors of human skin under cyclic loading conditions.展开更多
We propose a ground-state cooling scheme for a nanomechanical oscillator(NMO)that interacts with an optical cavity via radiation pressure at one side and with a superconducting microwave cavity via a capacitor at the ...We propose a ground-state cooling scheme for a nanomechanical oscillator(NMO)that interacts with an optical cavity via radiation pressure at one side and with a superconducting microwave cavity via a capacitor at the other side.By driving these two cavities on their respective red sidebands with extra laser and microwave fields,the NMO’s dual cooling channel is created through electro-optomechanical cooperation.Differing from the conventional optomechanical system with a single optical cavity wherein ground-state cooling is limited in the resolved sideband,the proposed scheme allows the optical cavity to function in an unresolved sideband regime under the cooperation of a microwave cavity with a high quality factor,or vice versa.In a weak coupling regime we demonstrate that the NMO can be cooled to near its ground-state from a finite temperature with a cooling rate that is significantly faster than that of the single-cavity optomechanical system.The heating process can be completely suppressed by the cooperation of the dual cooling channel by appropriately selecting the system’s parameters.With a decreasing thermal phonon number,the numerical results of final mechanical occupancy gradually approach the analytical cooling limit.展开更多
文摘This paper introduces the characteristics of the education mode of O2O, and clarifies the shortcomings of the training of network engineering and information security professionals. Later Anhui Institute of Information Engineering puts forward the theory of O2O education in network engineering and information security professionals, and lastly discusses the detailed plan and implementation of the education model of O2O in detail. This model has achieved good results.
基金supported by Major Program of the National Natural Science Foundation of China(T2293720/T2293722)the program of Innovation Team in Universities and Colleges in Guangdong(2021KCXTD006).
文摘Skin tissue is a kind of complex biological material abundant with fibers.A new constitutive model,relating macroscopic responses with microstructural fiber configuration alteration,is developed to investigate the stress softening behaviors of skin tissue observed during cyclic loading-unloading tests.Two influential factors are introduced to describe the impact of fiber configuration change and stretch-induced damage.The present model achieves good agreement between predicted stress distribution of human skin and corresponding ex vivo experimental data obtained from the literature,affirming its capability to effectively capture the characteristic softening behaviors of human skin under cyclic loading conditions.
基金the National Natural Science Foundation of China(Grant Nos.11564041,and 61822114).
文摘We propose a ground-state cooling scheme for a nanomechanical oscillator(NMO)that interacts with an optical cavity via radiation pressure at one side and with a superconducting microwave cavity via a capacitor at the other side.By driving these two cavities on their respective red sidebands with extra laser and microwave fields,the NMO’s dual cooling channel is created through electro-optomechanical cooperation.Differing from the conventional optomechanical system with a single optical cavity wherein ground-state cooling is limited in the resolved sideband,the proposed scheme allows the optical cavity to function in an unresolved sideband regime under the cooperation of a microwave cavity with a high quality factor,or vice versa.In a weak coupling regime we demonstrate that the NMO can be cooled to near its ground-state from a finite temperature with a cooling rate that is significantly faster than that of the single-cavity optomechanical system.The heating process can be completely suppressed by the cooperation of the dual cooling channel by appropriately selecting the system’s parameters.With a decreasing thermal phonon number,the numerical results of final mechanical occupancy gradually approach the analytical cooling limit.