Ultrathin metalorganic framework (MOF) nanosheets are attracting great interest in catalysis due to their unique and intriguing two-dime nsional (2D) features. Although many progresses have been achieved, it is still ...Ultrathin metalorganic framework (MOF) nanosheets are attracting great interest in catalysis due to their unique and intriguing two-dime nsional (2D) features. Although many progresses have been achieved, it is still highly desirable to develop novel strategies for controllable synthesis of the well-defined ultrathin MOF nanosheets. Herein we report a polyvinylpyrrolidone (PVP)-assisted route to synthesize the ultrathin Ni-MOF nanosheets characteristic of 1.5 nm in thickness, in which PVP is reacted with 2-aminoterephthalic acid (H2BDC-NH2) via formation of C=N bon d, followed by coord inatio n with Ni2+ io ns to form the ultrathi n MOF n anosheets. Impressively, when used in the Kno eve nagel condensation reactions of propane dinitrile with different aldehydes, ultrathin Ni-MOF nanosheets display the significantly enhanced catalytic activity and good stability in respect with the bulk Ni-MOF, mainly owing to the exposed active sites as well as facile mass transfer and diffusion of substrates and products.展开更多
Single site catalysts provide a unique platform for mimicking natural enzyme due to their tunable interaction between metal center and coordinated ligand.However,most works have focused on preparing structural and fun...Single site catalysts provide a unique platform for mimicking natural enzyme due to their tunable interaction between metal center and coordinated ligand.However,most works have focused on preparing structural and functional models of nature enzyme,with less reports also taking the local chemical environment,i.e.,functional/catalytic residues around the active site which is an essential feature of enzymes,into consideration.Herein,we report a Co-centered porphyrinic polymer containing the enzyme-mimic micro-environment,where the linker triazole over CoN4 site enables formation of hydrogen bond with the*COOH intermediate,thus promoting the electrocatalytic reduction of CO_(2).As-prepared catalyst achieves the CO_(2)-to-CO conversion of 5,788 h^(−1) turnover frequency value and near unit(~96%)faradaic efficiency at−0.61 V versus reversible hydrogen electrode.This strategy will bring new dimension of designing highly active single-site catalysts.展开更多
基金the National Key Basic Research Program of China (Nos. 2014CB931801 and 2016YFA0200700, Z. Y. T.)National Natural Science Foundation of China (Nos. 21890381, 21721002 and 21475029, Z. Y. T.+4 种基金21722102, 51672053 and 21303029, G. D. L.)Beijing Natural Science Foundation (No. 2182087, G. D. L.)Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038,Z. Y. T.)K. C. Wong Education Foundation (Z. Y T.)Youth Innovation Promotion Association CAS (No. 2016036, G. D. L.).
文摘Ultrathin metalorganic framework (MOF) nanosheets are attracting great interest in catalysis due to their unique and intriguing two-dime nsional (2D) features. Although many progresses have been achieved, it is still highly desirable to develop novel strategies for controllable synthesis of the well-defined ultrathin MOF nanosheets. Herein we report a polyvinylpyrrolidone (PVP)-assisted route to synthesize the ultrathin Ni-MOF nanosheets characteristic of 1.5 nm in thickness, in which PVP is reacted with 2-aminoterephthalic acid (H2BDC-NH2) via formation of C=N bon d, followed by coord inatio n with Ni2+ io ns to form the ultrathi n MOF n anosheets. Impressively, when used in the Kno eve nagel condensation reactions of propane dinitrile with different aldehydes, ultrathin Ni-MOF nanosheets display the significantly enhanced catalytic activity and good stability in respect with the bulk Ni-MOF, mainly owing to the exposed active sites as well as facile mass transfer and diffusion of substrates and products.
基金the National Science Fund for Distinguished Young Scholars(No.51825202)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)+2 种基金the National Key Basic Research Program of China(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21775032,92056204,21890381,and 21721002)Frontier Science Key Project of Chinese Academy of Sciences(No.QYZDJ-SSW-SLH038).
文摘Single site catalysts provide a unique platform for mimicking natural enzyme due to their tunable interaction between metal center and coordinated ligand.However,most works have focused on preparing structural and functional models of nature enzyme,with less reports also taking the local chemical environment,i.e.,functional/catalytic residues around the active site which is an essential feature of enzymes,into consideration.Herein,we report a Co-centered porphyrinic polymer containing the enzyme-mimic micro-environment,where the linker triazole over CoN4 site enables formation of hydrogen bond with the*COOH intermediate,thus promoting the electrocatalytic reduction of CO_(2).As-prepared catalyst achieves the CO_(2)-to-CO conversion of 5,788 h^(−1) turnover frequency value and near unit(~96%)faradaic efficiency at−0.61 V versus reversible hydrogen electrode.This strategy will bring new dimension of designing highly active single-site catalysts.