期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Feasibility of maintaining satellite altimetry calibration site based on qianliyan islet at the Yellow Sea
1
作者 Bin Guan zhongmiao sun +2 位作者 Lei Yang Zhenhe Zhai Jian Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第3期223-230,共8页
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order... The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed. 展开更多
关键词 Satellite altimetry Altimeter calibration Satellite radar altimeter Microwave radiometer JASON Tide gauge
下载PDF
Bathymetry predicting using the altimetry gravity anomalies in South China Sea 被引量:3
2
作者 zhongmiao sun Mingda Ouyang Bin Guan 《Geodesy and Geodynamics》 2018年第2期156-161,共6页
In South China Sea(112°E-119°E, 12°N-20°N), 81159 ship soundings published by NGDC(National Geophysics Data Center) and the altimetry gravity anomalies published by SIO(Scripps Institute of Oceanog... In South China Sea(112°E-119°E, 12°N-20°N), 81159 ship soundings published by NGDC(National Geophysics Data Center) and the altimetry gravity anomalies published by SIO(Scripps Institute of Oceanography) were used to predict bathymetry by GGM(gravity-geologic method) and SAS(Smith and Sandwell) method respectively. The residual 40576 ship soundings were used to estimate precisions of the predicted bathymetry models. Results showed that: the standard deviation of difference between the GGM model and ship soundings was 59.75 m and the relative accuracy was 1.86%. The SAS model is60.07 m and 1.87%. The power spectral densities of the ETOPO1, SIO, GGM and SAS models were also compared and analyzed. At last, we presented an integrated bathymetry model by weighted averaging method, the weighted factors were determined by precisions of the ETOPO1, SIO, GGM, and SAS model respectively. 展开更多
关键词 Gravity-geologic method Smith and Sandwell method BATHYMETRY Gravity anomaly Power spectral density analysis
下载PDF
A Two-step Estimation Method of Troposphere Delay with Consideration of Mapping Function Errors 被引量:11
3
作者 Haopeng FAN zhongmiao sun +1 位作者 Liping ZHANG Xiaogang LIU 《Journal of Geodesy and Geoinformation Science》 2020年第1期76-84,共9页
Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably br... Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent. 展开更多
关键词 TROPOSPHERIC DELAY mapping function ERRORS Very Long BASELINE Interferometry parameter weighted adjustment European CENTRE for Medium-Range Weather Forecasts
下载PDF
Downward continuation of airborne gravimetry data based on Poisson integral iteration method 被引量:1
4
作者 Xiaogang Liu zhongmiao sun +1 位作者 Kang Xu Mingda Ouyang 《Geodesy and Geodynamics》 2017年第4期273-277,共5页
The research and application of airborne gravimetry technology has become one of the hottest topics in gravity field in recent years. Downward continuation is one of the key steps in airborne gravimetry data processin... The research and application of airborne gravimetry technology has become one of the hottest topics in gravity field in recent years. Downward continuation is one of the key steps in airborne gravimetry data processing, and the quality of continuation results directly influence the further application of surveying data. The Poisson integral iteration method is proposed in this paper, and the modified Poisson integral discretization formulae are also introduced in the downward continuation of airborne gravimerty data. For the test area in this paper, compared with traditional Poisson integral discretization formula, the continuation result of modified formulae is improved by 10.8 mGal, and the precision of Poisson integral iteration method is in the same amplitude as modified formulae. So the Poisson integral iteration method can reduce the discretization error of Poisson integral formula effectively. Therefore, the research achievements in this paper can be applied directly in the data processing of our country's airborne scalar and vector gravimetry. 展开更多
关键词 Airborne gravimetry Downward continuation Poisson integral Gravity anomaly Discretization
下载PDF
Feasibility Analysis of Performance Validation for Satellite Altimeters Using Tide Gauge and Deep-ocean Bottom Pressure Recorder 被引量:2
5
作者 Bin GUAN zhongmiao sun +2 位作者 Xiaogang LIU Zhenhe ZHAI Xianping QIN 《Journal of Geodesy and Geoinformation Science》 2020年第1期102-109,共8页
Independent of traditional approach of satellite altimeter calibration, the feasibility of altimeter validation using tide gauge located on solitary island at open sea (TGSI) and deep-ocean bottom pressure recorder (D... Independent of traditional approach of satellite altimeter calibration, the feasibility of altimeter validation using tide gauge located on solitary island at open sea (TGSI) and deep-ocean bottom pressure recorder (DBPR) separately is initially studied. Bias of Jason-3 sea surface height (SSH) and relative SSH bias (Δbias) between Jason-2 and Jason-3 is calculated using the data of tide gauge on Harvest oil platform, tide gauge No. 1890000 and DBPR No. 21419. The standard deviations of calculated SSH bias sequence are 3.98 cm, 2.87 cm and 8.61 cm respectively, and Δbias (Jason-3—Jason-2) is -3.62± 2.17 cm , -2.58±1.97 cm and -2.60±1.30 cm respectively. Comparing to the results reported by international calibration sites, the results show that Jason-3 SSH is 3.0 cm lower than that of Jason-2, the selected DBPR is appropriate to the calculation of relative SSH bias between Jason-2 and Jason-3, but it is not suitable for calibration or validation of single satellite, TGSI is appropriate to both. 展开更多
关键词 satellite ALTIMETRY ALTIMETER calibration TIDE gauge DEEP-OCEAN Assessment and REPORTING of Tsunamis relative bias pressure RECORDER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部