Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level...Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
Partial cooperation formulation is a more viable option than optimistic's and pessimistic's to solve an ill-posed bilevel programming problem.Aboussoror's partial cooperation model uses a constant as a cooperation ...Partial cooperation formulation is a more viable option than optimistic's and pessimistic's to solve an ill-posed bilevel programming problem.Aboussoror's partial cooperation model uses a constant as a cooperation index to describe the degree of follower's cooperation.The constant only indicates the leader's expectation coefficient for the follower's action,not the follower's own willingness.To solve this situation,a new model is proposed by using the follower's satisfactory degree as the cooperation degree.Then,because this new cooperation degree is a function which is dependent on the leader's choice and decided by the follower's satisfactory degree,this paper proves such proposed model not only leads an optimal value between the optimistic value and pessimistic's,but also leads a more satisfactory solution than Aboussoror's.Finally,a numerical experiment is given to demonstrate the feasibility of this new model.展开更多
A class of bilevel variational inequalities(shortly(BVI))with hierarchical nesting structure is firstly introduced and investigated.The relationship between(BVI)and some existing bilevel problems are presented.Subseq...A class of bilevel variational inequalities(shortly(BVI))with hierarchical nesting structure is firstly introduced and investigated.The relationship between(BVI)and some existing bilevel problems are presented.Subsequently,the existence of solution and the behavior of solution sets to(BVI)and the lower level variational inequality are discussed without coercivity.By using the penalty method,we transform(BVI)into one-level variational inequality,and establish the equivalence between(BVI)and the one-level variational inequality.A new iterative algorithm to compute the approximate solutions of(BVI)is also suggested and analyzed.The convergence of the iterative sequence generated by the proposed algorithm is derived under some mild conditions.Finally,some relationships among(BVI),system of variational inequalities and vector variational inequalities are also given.展开更多
基金supported by the National Natural Science Foundationof China (70771080)the National Science Foundation of Hubei Province(20091107)Hubei Province Key Laboratory of Systems Science in Metallurgical Process (B201003)
文摘Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(1140145071171150+4 种基金71471143)the Hubei Provincial Department of Education(B2015348D20141101)the Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Y201518Z201401)
文摘Partial cooperation formulation is a more viable option than optimistic's and pessimistic's to solve an ill-posed bilevel programming problem.Aboussoror's partial cooperation model uses a constant as a cooperation index to describe the degree of follower's cooperation.The constant only indicates the leader's expectation coefficient for the follower's action,not the follower's own willingness.To solve this situation,a new model is proposed by using the follower's satisfactory degree as the cooperation degree.Then,because this new cooperation degree is a function which is dependent on the leader's choice and decided by the follower's satisfactory degree,this paper proves such proposed model not only leads an optimal value between the optimistic value and pessimistic's,but also leads a more satisfactory solution than Aboussoror's.Finally,a numerical experiment is given to demonstrate the feasibility of this new model.
基金This work was supported by the Natural Science Foundation of China(Nos.71171150,11201039)the Doctor Fund of Southwest University(No.SWU113037)+1 种基金the Fundamental Research Funds for the Central Universities(No.XDJK2014C073)The authors wish to thank the anonymous referees and associated editor for their very careful and valuable comments which led to an improved presentation of this manuscript.
文摘A class of bilevel variational inequalities(shortly(BVI))with hierarchical nesting structure is firstly introduced and investigated.The relationship between(BVI)and some existing bilevel problems are presented.Subsequently,the existence of solution and the behavior of solution sets to(BVI)and the lower level variational inequality are discussed without coercivity.By using the penalty method,we transform(BVI)into one-level variational inequality,and establish the equivalence between(BVI)and the one-level variational inequality.A new iterative algorithm to compute the approximate solutions of(BVI)is also suggested and analyzed.The convergence of the iterative sequence generated by the proposed algorithm is derived under some mild conditions.Finally,some relationships among(BVI),system of variational inequalities and vector variational inequalities are also given.