Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis...Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.展开更多
Volatile organic compounds(VOCs)play an important role in the formation of ground-level ozone and secondary organic aerosol(SOA),and they have been key issues in current air pollution prevention and control in China.C...Volatile organic compounds(VOCs)play an important role in the formation of ground-level ozone and secondary organic aerosol(SOA),and they have been key issues in current air pollution prevention and control in China.Considerable attention has been paid to industrial activities due to their large and relatively complex VOCs emissions.The present research aims to provide a comprehensive review on whole-process control of industrial VOCs,which mainly includes source reduction,collection enhancement and end-pipe treatments.Lower VOCs materials including water-borne ones are the keys to source substitution in industries related to coating and solvent usage,leak detection and repair(LDAR)should be regarded as an efficient means of source reduction in refining,petrochemical and other chemical industries.Several types of VOCs collection methods such as gas-collecting hoods,airtight partitions and others are discussed,and airtight collection at negative pressure yields the best collection efficiency.Current end-pipe treatments like UV oxidation,low-temperature plasma,activated carbon adsorption,combustion,biodegradation,and adsorption-combustion are discussed in detail.Finally,several recommendations are made for future advanced treatment and policy development in industrial VOCs emission control.展开更多
The structure-activity relationships for vinyl acetate catalytic oxidation are challenging to explore at the atomic scale due to the ambiguity of the structural defect types and sites of manganese oxides.Our work elab...The structure-activity relationships for vinyl acetate catalytic oxidation are challenging to explore at the atomic scale due to the ambiguity of the structural defect types and sites of manganese oxides.Our work elaborates,at the atomic level,through in-situ experimental and theoretical methods,the synergistic effects of two types of structural defect sites of Vo-e(edge-sharing oxygen)and Vo-c(corner-sharing oxygen)and MnO6 structural motifs of manganese oxides.Multi-dimensional manganese oxides,namely those with corner-connected MnOs structural motifs and Vo-c structural oxygen defect sites,significantly improved the activation of vinyl acetate.Enhancement of enol structure formation,acetate and formate intermediate species,and tautomerism between enol structure and acetaldehyde were detected when oxygen vacancies of manganese oxides were present in combination with corner/edge-connected MnO6.Moreover,the activation of chemical bonds and deep catalytic oxidation of vinyl acetate depend on the presence of a redox couple,surface oxygen species,and weakened Mn-O bonds.It provides a valuable notion for investigating and designing catalytic systems and reaction processes for the purpose of emission reduction and the management of environmental contaminants.展开更多
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic d...In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350 ℃ over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5(25) exhibited the highest selectivity to N2, exceeding 90% at 350 ℃. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Bronsted acidity and the isolated Cu^2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.展开更多
The catalytic elimination of nitrogen-containing volatile organic compounds(NVOCs)still encounters bottlenecks in NO_(x)formation and low N_(2)selectivity.Here,a series of Cu-promoted Ce-Zr mixed oxide catalysts were ...The catalytic elimination of nitrogen-containing volatile organic compounds(NVOCs)still encounters bottlenecks in NO_(x)formation and low N_(2)selectivity.Here,a series of Cu-promoted Ce-Zr mixed oxide catalysts were synthesized using a simple precipitation approach,and n-butylamine was adopted as the probe pollutant to evaluate their catalytic performance.The Ce Cu_(10%)ZrO_(x)catalyst exhibited the best catalytic activity,with 100%n-butylamine conversion and 90%N_(2)selectivity at 250℃.Concurrently,this sample also displayed good water resistance.A detailed characterization of the catalyst was performed through a series of experimental studies and theoretical calculations.The addition of Cu increased the redox property and promoted the production of oxygen vacancies,all of which were favorable for the greatest nbutylamine selective catalytic oxidation performance.The changes of oxygen vacancies over Ce Cu_(10%)ZrO_(x)in reaction process were studied by in situ Raman spectra.Moreover,in situ diffuse reflectance infrared Fourier transform spectra(DRIFTs)and theoretical calculations were employed to explore the reaction mechanism of n-butylamine selective oxidation.The high activity and selectivity of this catalyst confirm the practical feasibility of the selective oxidation of n-butylamine to CO_(2)and N_(2),and the exploration of the reaction mechanism provides new insights into the further design of catalysts.展开更多
Ordered mesoporous carbon(OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound(VOC)disposal. Benzene, cyclohexane and hexane w...Ordered mesoporous carbon(OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound(VOC)disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.展开更多
A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next load...A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h^-1, the 90% conversion of o-xylene has been obtained at around 200℃. The BET and SEM results indicated that Pd/MMS- b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.展开更多
A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method.Cobalt-transition metal oxides(Co2XA10,X=Co,Mg,Ca and Ni)were investigated for the deep catalytic oxidation of o-chloro...A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method.Cobalt-transition metal oxides(Co2XA10,X=Co,Mg,Ca and Ni)were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms.The partial substitution of Co by Mg,Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol.The Co2MgA10 catalyst presented the best catalytic activity,and could maintain 90%o-chlorophenol conversion at 167.1℃,compared only 27%conversion for the Co3A10 catalyst.The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility,rich active oxygen species and excellent oxygen mobility.In the existence of acid and base sites,catalysts with strong basicity also showed preferred activity.The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride,trichloroethylene,2,4-dichlorophenol,and 2,6-dichloro-p-benzoquinon,et al.This work provides a facile method for the preparation of Co-based composite oxide catalysts,which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.展开更多
基金supported financially by the“Xing Liao Talents Program”Project(No.XLYC1902051)the National Natural Science Foundation of China(No.22076018)+1 种基金the Fundamental Research Funds for the Central Universities(No.DUT19LAB10)the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Education,and the State Key Laboratory of Catalysis in DICP(No.N-20-06)。
文摘Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.
基金supported by the R&D Program of Beijing Municipal Education Commission(No.KJZD20191443001)the Project of Beijing Municipal Science&Technology Commission(No.Z181100000118003)the Foundation of Beijing Municipal Research Institute of Environmental Protection(No.Y2020-011)。
文摘Volatile organic compounds(VOCs)play an important role in the formation of ground-level ozone and secondary organic aerosol(SOA),and they have been key issues in current air pollution prevention and control in China.Considerable attention has been paid to industrial activities due to their large and relatively complex VOCs emissions.The present research aims to provide a comprehensive review on whole-process control of industrial VOCs,which mainly includes source reduction,collection enhancement and end-pipe treatments.Lower VOCs materials including water-borne ones are the keys to source substitution in industries related to coating and solvent usage,leak detection and repair(LDAR)should be regarded as an efficient means of source reduction in refining,petrochemical and other chemical industries.Several types of VOCs collection methods such as gas-collecting hoods,airtight partitions and others are discussed,and airtight collection at negative pressure yields the best collection efficiency.Current end-pipe treatments like UV oxidation,low-temperature plasma,activated carbon adsorption,combustion,biodegradation,and adsorption-combustion are discussed in detail.Finally,several recommendations are made for future advanced treatment and policy development in industrial VOCs emission control.
基金financially supported by the National Natural Science Foundation of China(No.22006079)the R&D Program of Beijing Municipal Education Commission(No.KjzD20191443001)+2 种基金the National Key Research and Development Program of China(No.2016YFC0204203)the Project of Ningxia Key Research and Development Plan(No.2020BEB04009)National First-rate Discipline Construction Project of Ningxia(No.NXYLXK2017A04).
文摘The structure-activity relationships for vinyl acetate catalytic oxidation are challenging to explore at the atomic scale due to the ambiguity of the structural defect types and sites of manganese oxides.Our work elaborates,at the atomic level,through in-situ experimental and theoretical methods,the synergistic effects of two types of structural defect sites of Vo-e(edge-sharing oxygen)and Vo-c(corner-sharing oxygen)and MnO6 structural motifs of manganese oxides.Multi-dimensional manganese oxides,namely those with corner-connected MnOs structural motifs and Vo-c structural oxygen defect sites,significantly improved the activation of vinyl acetate.Enhancement of enol structure formation,acetate and formate intermediate species,and tautomerism between enol structure and acetaldehyde were detected when oxygen vacancies of manganese oxides were present in combination with corner/edge-connected MnO6.Moreover,the activation of chemical bonds and deep catalytic oxidation of vinyl acetate depend on the presence of a redox couple,surface oxygen species,and weakened Mn-O bonds.It provides a valuable notion for investigating and designing catalytic systems and reaction processes for the purpose of emission reduction and the management of environmental contaminants.
基金supported by the National Natural Science Foundation of China (Nos. 21477149,21677160,and 21707152)Beijing Municipal Science and Technology Commission (Nos. Z181100000118003 and Z181100005418011)。
文摘In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350 ℃ over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5(25) exhibited the highest selectivity to N2, exceeding 90% at 350 ℃. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Bronsted acidity and the isolated Cu^2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.
基金the R&D Program of Beijing Municipal Education Commission(No.KJZD20191443001)Beijing Municipal Science and Technology Commission(No.Z181100000118003)the Fundamental Research Funds for the Central Universities and Doctoral Research Start-up Fund Project of Taiyuan University of Science and Technology(No.20202053)。
文摘The catalytic elimination of nitrogen-containing volatile organic compounds(NVOCs)still encounters bottlenecks in NO_(x)formation and low N_(2)selectivity.Here,a series of Cu-promoted Ce-Zr mixed oxide catalysts were synthesized using a simple precipitation approach,and n-butylamine was adopted as the probe pollutant to evaluate their catalytic performance.The Ce Cu_(10%)ZrO_(x)catalyst exhibited the best catalytic activity,with 100%n-butylamine conversion and 90%N_(2)selectivity at 250℃.Concurrently,this sample also displayed good water resistance.A detailed characterization of the catalyst was performed through a series of experimental studies and theoretical calculations.The addition of Cu increased the redox property and promoted the production of oxygen vacancies,all of which were favorable for the greatest nbutylamine selective catalytic oxidation performance.The changes of oxygen vacancies over Ce Cu_(10%)ZrO_(x)in reaction process were studied by in situ Raman spectra.Moreover,in situ diffuse reflectance infrared Fourier transform spectra(DRIFTs)and theoretical calculations were employed to explore the reaction mechanism of n-butylamine selective oxidation.The high activity and selectivity of this catalyst confirm the practical feasibility of the selective oxidation of n-butylamine to CO_(2)and N_(2),and the exploration of the reaction mechanism provides new insights into the further design of catalysts.
基金the State Key program of National Natural Science Foundation (No. 21337003)the Strategic Priority Research Program (No. XDB05050200)+2 种基金the National High Technology Research and Development Program of China (2012AA063101)the Special Environmental Protection Foundation for Public Welfare Project (No. 201309073)the Team Interaction and Cooperation of the Science and Technology Program of the Chinese Academy of Sciences
文摘Ordered mesoporous carbon(OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound(VOC)disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.
基金This work was financially supported by the National Natural Science Foundation (Grant Nos. 21337003 and 21477149), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050200).
文摘A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h^-1, the 90% conversion of o-xylene has been obtained at around 200℃. The BET and SEM results indicated that Pd/MMS- b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.
基金This work is financially supported by the National Natural Science Foundation of China(Grant Nos.21677160 and 21477149)Beijing Municipal Science&Technology Commission(Nos.Z181100000118003 and Z 181100005418011).
文摘A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method.Cobalt-transition metal oxides(Co2XA10,X=Co,Mg,Ca and Ni)were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms.The partial substitution of Co by Mg,Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol.The Co2MgA10 catalyst presented the best catalytic activity,and could maintain 90%o-chlorophenol conversion at 167.1℃,compared only 27%conversion for the Co3A10 catalyst.The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility,rich active oxygen species and excellent oxygen mobility.In the existence of acid and base sites,catalysts with strong basicity also showed preferred activity.The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride,trichloroethylene,2,4-dichlorophenol,and 2,6-dichloro-p-benzoquinon,et al.This work provides a facile method for the preparation of Co-based composite oxide catalysts,which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.