Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,...Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,phase engineering of 2D nanomaterials is opening a novel research direction to endow 2D nanostructures with fascinating properties for deep applications in catalyzing HER.In this review,we briefly summarize the research progress and present the current challenges on phase engineering of 2D nanomaterials for their applications in electrocatalytic HER.Our summary will be of significance to provide fundamental understanding for designing novel 2D nanomaterials with unconventional phases to electrochemically catalyze HER.展开更多
基金financially supported by the Key Grant for Special Professors in Jiangsu Province(No.RK030STP18001)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY218150)“1311 Talents Program”of Nanjing University of Posts and Telecommunications and the National Postdoctoral Program for Innovative Talents(No.BX20190156)。
文摘Hydrogen(H2)is considered to be a promising substitute for fossil fuels.Two-dimensional(2D)nanomaterials have exhibited an efficient electrocatalytic capacity to catalyze hydrogen evolution reaction(HER).Particularly,phase engineering of 2D nanomaterials is opening a novel research direction to endow 2D nanostructures with fascinating properties for deep applications in catalyzing HER.In this review,we briefly summarize the research progress and present the current challenges on phase engineering of 2D nanomaterials for their applications in electrocatalytic HER.Our summary will be of significance to provide fundamental understanding for designing novel 2D nanomaterials with unconventional phases to electrochemically catalyze HER.