期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure 被引量:3
1
作者 Ye Yuan zhongting mei +21 位作者 Zhezhe Qu Guanghui Li Shuting Yu Yingqi Liu Kuiwu Liu Zhihua Shen Jiaying Pu Yanquan Wang Changhao Wang Zhiyong Sun Qian Liu Xiaochen Pang Ao Wang Zijing Ren Tong Wang Ying Liu Jinhuan Hong Jiajie Xie Xin Li Zhonghua Wang Weijie Du Baofeng Yang 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第4期2007-2021,共15页
Heart failure(HF)patients in general have a higher risk of developing cancer.Several animal studies have indicated that cardiac remodeling and HF remarkably accelerate tumor progression,highlighting a cause-and-effect... Heart failure(HF)patients in general have a higher risk of developing cancer.Several animal studies have indicated that cardiac remodeling and HF remarkably accelerate tumor progression,highlighting a cause-and-effect relationship between these two disease entities.Targeting ferroptosis,a prevailing form of non-apoptotic cell death,has been considered a promising therapeutic strategy for human cancers.Exosomes critically contribute to proximal and distant organ-organ communications and play crucial roles in regulating diseases in a paracrine manner.However,whether exosomes control the sensitivity of cancer to ferroptosis via regulating the cardiomyocyte-tumor cell crosstalk in ischemic HF has not yet been explored.Here,we demonstrate that myocardial infarction(MI)decreased the sensitivity of cancer cells to the canonical ferroptosis activator erastin or imidazole ketone erastin in a mouse model of xenograft tumor.Post-MI plasma exosomes potently blunted the sensitivity of tumor cells to ferroptosis inducers both in vitro in mouse Lewis lung carcinoma cell line LLC and osteosarcoma cell line K7M2 and in vivo with xenograft tumorigenesis model.The expression of miR-22-3p in cardiomyocytes and plasma-exosomes was significantly upregulated in the failing hearts of mice with chronic MI and of HF patients as well.Incubation of tumor cells with the exosomes isolated from post-MI mouse plasma or overexpression of miR-22-3p alone abrogated erastin-induced ferroptotic cell death in vitro.Cardiomyocyte-enriched miR-22-3p was packaged in exosomes and transferred into tumor cells.Inhibition of cardiomyocyte-specific miR-22-3p by AAV9 sponge increased the sensitivity of cancer cells to ferroptosis.ACSL4,a pro-ferroptotic gene,was experimentally established as a target of miR-22-3p in tumor cells.Taken together,our findings uncovered for the first time that MI suppresses erastin-induced ferroptosis through releasing miR-22-3p-enriched exosomes derived from cardiomyocytes.Therefore,targeting exosome-mediated cardiomyocyte/tumor pathological communication may offer a novel approach for the ferroptosis-based antitumor therapy. 展开更多
关键词 EXOSOMES enriched prevailing
原文传递
Mettl13 protects against cardiac contractile dysfunction by negatively regulating C-Cbl-mediated ubiquitination of SERCA2a in ischemic heart failure
2
作者 Shuting Yu ZhiYong Sun +19 位作者 Xiuzhu Wang Tiantian Ju Changhao Wang Yingqi Liu Zhezhe Qu KuiWu Liu zhongting mei Na Li meixi Lu Fan Wu Min Huang Xiaochen Pang Yingqiong Jia Ying Li Yaozhi Zhang Shunkang Dou Jianhao Jiang Xin Li Baofeng Yang Weijie Du 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第12期2786-2804,共19页
Ischemic heart failure(HF)remains a leading cause of morbidity and mortality.Maintaining homeostasis of cardiac function and preventing cardiac remodeling deterioration are critical to halting HF progression.Methyltra... Ischemic heart failure(HF)remains a leading cause of morbidity and mortality.Maintaining homeostasis of cardiac function and preventing cardiac remodeling deterioration are critical to halting HF progression.Methyltransferase-like protein 13(Mettl13)has been shown to regulate protein translation efficiency by acting as a protein lysine methyltransferase,but its role in cardiac pathology remains unexplored.This study aims to characterize the roles and mechanisms of Mettl13 in cardiac contractile function and HF.We found that Mettl13 was downregulated in the failing hearts of mice post-myocardial infarction(MI)and in a cellular model of oxidative stress.Cardiomyocyte-specific overexpression of Mettl13 mediated by AAV9-Mettl13 attenuated cardiac contractile dysfunction and fibrosis in response to MI,while silencing of Mettl13 impaired cardiac function in normal mice.Moreover,Mettl13 overexpression abrogated the reduction in cell shortening,Ca^(2+)transient amplitude and SERCA2a protein levels in the cardiomyocytes of adult mice with MI.Conversely,knockdown of Mettl13 impaired the contractility of cardiomyocytes,and decreased Ca^(2+)transient amplitude and SERCA2a protein expression in vivo and in vitro.Mechanistically,Mettl13 impaired the stability of c-Cbl by inducing lysine methylation of c-Cbl,which in turn inhibited ubiquitination-dependent degradation of SERCA2a.Furthermore,the inhibitory effects of knocking down Mettl13 on SERCA2a protein expression and Ca^(2+)transients were partially rescued by silencing c-Cbl in H_(2)O_(2)-treated cardiomyocytes.In conclusion,our study uncovers a novel mechanism that involves the Mettl13/c-Cbl/SERCA2a axis in regulating cardiac contractile function and remodeling,and identifies Mettl13 as a novel therapeutic target for ischemic HF. 展开更多
关键词 heart failure Mettl13 SERCA2A C-CBL UBIQUITINATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部