期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rapid health estimation of in-service battery packs based on limited labels and domain adaptation
1
作者 zhongwei deng Le Xu +3 位作者 Hongao Liu Xiaosong Hu Bing Wang Jingjing Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期345-354,I0009,共11页
For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing m... For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing methods often rely on lengthy battery charging/discharging data or extensive training samples,which hinders their implementation in practical scenarios.To address this issue,a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper.First,a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees.Then,increment capacity sequences(△Q)within a short voltage span are extracted from charging process to indicate battery health.Furthermore,data-driven models based on deep convolutional neural network(DCNN)are constructed to estimate battery state of health(SOH),where the synthetic data is employed to pre-train the models,and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability.Finally,field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods.By using the△Q with 100 m V voltage change,the SOH of battery packs can be accurately estimated with an error around 3.2%. 展开更多
关键词 Lithium-ion battery Electric vehicles Health estimation Feature extraction Convolutional neural network Domain adapatation
下载PDF
Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
2
作者 Qingguang Qi Wenxue Liu +3 位作者 zhongwei deng Jinwen Li Ziyou Song Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期605-618,共14页
Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using... Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis. 展开更多
关键词 Electricvehicle Lithium-ion battery pack Capacity estimation Machine learning Field data
下载PDF
Lifetime and Aging Degradation Prognostics for Lithium-ion Battery Packs Based on a Cell to Pack Method 被引量:3
3
作者 Yunhong Che zhongwei deng +3 位作者 Xiaolin Tang Xianke Lin Xianghong Nie Xiaosong Hu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期192-207,共16页
Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region.This paper proposes a novel cell to pack health and lifetime prognostics method based on the combination... Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region.This paper proposes a novel cell to pack health and lifetime prognostics method based on the combination of transferred deep learning and Gaussian process regression.General health indicators are extracted from the partial discharge process.The sequential degradation model of the health indicator is developed based on a deep learning framework and is migrated for the battery pack degradation prediction.The future degraded capacities of both battery pack and each battery cell are probabilistically predicted to provide a comprehensive lifetime prognostic.Besides,only a few separate battery cells in the source domain and early data of battery packs in the target domain are needed for model construction.Experimental results show that the lifetime prediction errors are less than 25 cycles for the battery pack,even with only 50 cycles for model fine-tuning,which can save about 90%time for the aging experiment.Thus,it largely reduces the time and labor for battery pack investigation.The predicted capacity trends of the battery cells connected in the battery pack accurately reflect the actual degradation of each battery cell,which can reveal the weakest cell for maintenance in advance. 展开更多
关键词 Lithium-ion battery packs Lifetime prediction Degradation prognostic Model migration Machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部