期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
1
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang zhongwei lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH Soil water potential Irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Reinforced cathode-garnet interface for high-capacity all-solid-state batteries 被引量:1
2
作者 Chenxi Zheng Shijun Tang +7 位作者 Fangmei Wen Jinxue Peng Wu Yang zhongwei lv Yongmin Wu Weiping Tang Zhengliang Gong Yong Yang 《Materials Futures》 2022年第4期144-153,共10页
Garnet-type solid-state electrolytes(SSEs)are particularly attractive in the construction of all-solid-state lithium(Li)batteries due to their high ionic conductivity,wide electrochemical window and remarkable(electro... Garnet-type solid-state electrolytes(SSEs)are particularly attractive in the construction of all-solid-state lithium(Li)batteries due to their high ionic conductivity,wide electrochemical window and remarkable(electro)chemical stability.However,the intractable issues of poor cathode/garnet interface and general low cathode loading hinder their practical application.Herein,we demonstrate the construction of a reinforced cathode/garnet interface by spark plasma sintering,via co-sintering Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)electrolyte powder and LiCoO_(2)/LLZTO composite cathode powder directly into a dense dual-layer with 5 wt%Li_(3)BO_(3)as sintering additive.The bulk composite cathode with LiCoO_(2)/LLZTO cross-linked structure is firmly welded to the LLZTO layer,which optimizes both Li-ion and electron transport.Therefore,the one-step integrated sintering process implements an ultra-low cathode/garnet interfacial resistance of 3.9Ωcm^(2)(100◦C)and a high cathode loading up to 2.02 mAh cm^(−2).Moreover,the Li_(3)BO_(3)reinforced LiCoO_(2)/LLZTO interface also effectively mitigates the strain/stress of LiCoO_(2),which facilitates the achieving of superior cycling stability.The bulk-type Li|LLZTO|LiCoO_(2)-LLZTO full cell with areal capacity of 0.73 mAh cm^(−2)delivers capacity retention of 81.7%after 50 cycles at 100μA cm^(−2).Furthermore,we reveal that non-uniform Li plating/stripping leads to the formation of gaps and finally results in the separation of Li and LLZTO electrolyte during long-term cycling,which becomes the dominant capacity decay mechanism in high-capacity full cells.This work provides insight into the degradation of Li/SSE interface and a strategy to radically improve the electrochemical performance of garnet-based all-solid-state Li batteries. 展开更多
关键词 garnet electrolyte all-solid-state battery high cathode loading interface evolution spark plasma sintering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部