Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound vide...Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound video feed,provides BI-RADS categorizations;and has reliable sensitivity and specificity.Multiple deep-learning models were trained on more than 300,000 breast ultrasound images to achieve object detection and regions of interest classification.The main objective of this study was to determine whether the performance of our Al-powered solution was comparable to that of ultrasound radiologists.Methods:The noninferiority evaluation was conducted by comparing the examination results of the same screening women between our AI-powered solution and ultrasound radiologists with over 10 years of experience.The study lasted for one and a half years and was carried out in the Duanzhou District Women and Children's Hospital,Zhaoqing,China.1,133 females between 20 and 70 years old were selected through convenience sampling.Results:The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were 93.03%,94.90%,90.71%,92.68%,and 93.48%,respectively.The area under the curve(AUC)for all positives was 0.91569 and the AUC for all negatives was 0.90461.The comparison indicated that the overall performance of the AI system was comparable to that of ultrasound radiologists.Conclusion:This innovative AI-powered ultrasound solution is cost-effective and user-friendly,and could be applied to massive breast cancer screening.展开更多
文摘Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound video feed,provides BI-RADS categorizations;and has reliable sensitivity and specificity.Multiple deep-learning models were trained on more than 300,000 breast ultrasound images to achieve object detection and regions of interest classification.The main objective of this study was to determine whether the performance of our Al-powered solution was comparable to that of ultrasound radiologists.Methods:The noninferiority evaluation was conducted by comparing the examination results of the same screening women between our AI-powered solution and ultrasound radiologists with over 10 years of experience.The study lasted for one and a half years and was carried out in the Duanzhou District Women and Children's Hospital,Zhaoqing,China.1,133 females between 20 and 70 years old were selected through convenience sampling.Results:The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were 93.03%,94.90%,90.71%,92.68%,and 93.48%,respectively.The area under the curve(AUC)for all positives was 0.91569 and the AUC for all negatives was 0.90461.The comparison indicated that the overall performance of the AI system was comparable to that of ultrasound radiologists.Conclusion:This innovative AI-powered ultrasound solution is cost-effective and user-friendly,and could be applied to massive breast cancer screening.