期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording
1
作者 zhongyang qi qingchun Guo +4 位作者 Shu Wang Mingyue Jia Xinwei Gao Minmin Luo Ling Fu 《Opto-Electronic Advances》 SCIE EI CAS 2022年第12期20-34,F0004,共16页
Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivi... Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivity, information transmission, and physiological functions of neural circuits in vivo. However, current techniques for optogenetic stimulation and neuronal activity recording mostly operate independently. Here, we report an all-fiber-transmission photometry system for simultaneous optogenetic manipulation and multi-color recording of neuronal activities and the neurotransmitter release in a freely moving animal. We have designed and manufactured a wavelength-independent multi-branch fiber bundle to enable simultaneous optogenetic manipulation and multi-color recording at different wavelengths. Further, we combine a laser of narrow linewidth with the lock-in amplification method to suppress the optogenetic stimulation-induced artifacts and channel crosstalk. We show that the collection efficiency of our system outperforms a traditional epi-fluorescence system. Further, we demonstrate successful recording of dynamic dopamine(DA) responses to unexpected rewards in the nucleus accumbens(NAc) in a freely moving mouse. We also show simultaneous dual-color recording of neuronal Ca2+ signals and DA dynamics in the NAc upon delivering an unexpected reward and the simultaneous optogenetic activating at dopaminergic terminals in the same location. Thus, our multi-function fiber photometry system provides a compatible, efficient, and flexible solution for neuroscientists to study neural circuits and neurological diseases. 展开更多
关键词 fiber photometry all-fiber-transmission multi-color optogenetic NEUROSCIENCE
下载PDF
Nose micro-blowing for asymmetric vortices control on blunt-nose slender body at high angle of attack
2
作者 Lei Wang Yankui Wang zhongyang qi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期351-356,共6页
The asymmetric vortices over blunt-nose slender body at high angles of attack result in random side force. In this paper, a nose micro-blowing technology is used to control the asymmetric flow. Pressure measurement an... The asymmetric vortices over blunt-nose slender body at high angles of attack result in random side force. In this paper, a nose micro-blowing technology is used to control the asymmetric flow. Pressure measurement and particle image velocimetry (PIV) experiments are conducted in a low-speed wind tunnel to research effects of jet flow rate on asymmetric vortices over blunt-nose slender body. The angle of attack of the model is fixed at 50° and the Reynolds number for the experiments is 1.6× 105 based on diameter of aftbody. A blow hole (5 mm in diameter) on the nose is processed at circumferential angle θb = 90° and meridian angleγb = 20° with jet momentum ratio Cμ ranging from 5.30× 10-7 to 1.19 × 10-4. Tests are made under two kinds of perturbations. One is called single perturbation with only blow hole and the other is called combined perturbation consists of blow hole and additional granules set on nose. The results show that whether the model has the single perturbation or the combined one, the sectional side force ofx/D = 3 varies in the same direction with the increasement of Cμ and remains stable when Cμ is greater than 3.29× 10- 6. But the stable force values are different according to various perturbations. The fact proves that the size and direction of the side force of blunt-nose slender body can be controlled by the nose micro-blowing. 展开更多
关键词 Nose micro-blowinglAsymmetric vorticeslBlunt-nose slender bodylHigh angle of attacklFlight control
下载PDF
A neuropsin-based optogenetic tool for precise control of Gq signaling
3
作者 Ruicheng Dai Tao Yu +12 位作者 Danwei Weng Heng Li Yuting Cui Zhaofa Wu qingchun Guo Haiyue Zou Wenting Wu Xinwei Gao zhongyang qi Yuqi Ren Shu Wang Yulong Li Minmin Luo 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第7期1271-1284,共14页
G_(q)-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca^(2+)signals.There is a strong need for an optogenetic tool that enables powerful experimental contr... G_(q)-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca^(2+)signals.There is a strong need for an optogenetic tool that enables powerful experimental control over G_(q) signaling.Here,we present chicken opsin 5(cOpn5)as the long sought-after,single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular G_(q) signaling with high temporal and spatial resolution.Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered,G_(q)-dependent Ca^(2+) release from intracellular stores and protein kinase C activation.Strong Ca^(2+) transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools.Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca^(2+)transition,thus demonstrating the high spatial precision of cOpn5 optogenetics.The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner.cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of G_(q) signaling in both non-excitable cells and excitable cells in all major organ systems. 展开更多
关键词 chicken opsin 5 ASTROCYTES PHOTOSTIMULATION Ca^(2+)imaging IP3 protein kinase C neural circuit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部