The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing...The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing information. This paper presented a two-step method to extract the seismic microwave radiation anomaly related with earthquake, which could eliminate the stable influence of geography, terrain, coversphere and seasons, as well as the random influence of weather. Furthermore the two-step method was applied to analyze the anomaly of Wenchuan earthquake based on the data of AMSR-E. Microwave radiation anomalies were effectively detected related to the main shock and aftershocks. The extracted microwave radiation variation showed general features of three-stage: the positive radiation anomaly appeared around the epicenter in the first stage, quiet variation in the second stage, and abnormal area gradually moved to the epicenter in the third stage. After the main shock the microwave radiation anomalies distributed along the Longmenshan faults, and the epicenters of aftershocks were coincident with the anomaly area in space.展开更多
Generating novel molecules to satisfy specific properties is a challenging task in modern drug discovery,which requires the optimization of a specific objective based on satisfying chemical rules.Herein,we aim to opti...Generating novel molecules to satisfy specific properties is a challenging task in modern drug discovery,which requires the optimization of a specific objective based on satisfying chemical rules.Herein,we aim to optimize the properties of a specific molecule to satisfy the specific properties of the generated molecule.The Matched Molecular Pairs(MMPs),which contain the source and target molecules,are used herein,and logD and solubility are selected as the optimization properties.The main innovative work lies in the calculation related to a specific transformer from the perspective of a matrix dimension.Threshold intervals and state changes are then used to encode logD and solubility for subsequent tests.During the experiments,we screen the data based on the proportion of heavy atoms to all atoms in the groups and select 12365,1503,and 1570 MMPs as the training,validation,and test sets,respectively.Transformer models are compared with the baseline models with respect to their abilities to generate molecules with specific properties.Results show that the transformer model can accurately optimize the source molecules to satisfy specific properties.展开更多
基金supported by the National Important Basic Research Project(No.2011CB707102)by the National Natural Science Foundation of China(No.41074127)
文摘The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing information. This paper presented a two-step method to extract the seismic microwave radiation anomaly related with earthquake, which could eliminate the stable influence of geography, terrain, coversphere and seasons, as well as the random influence of weather. Furthermore the two-step method was applied to analyze the anomaly of Wenchuan earthquake based on the data of AMSR-E. Microwave radiation anomalies were effectively detected related to the main shock and aftershocks. The extracted microwave radiation variation showed general features of three-stage: the positive radiation anomaly appeared around the epicenter in the first stage, quiet variation in the second stage, and abnormal area gradually moved to the epicenter in the third stage. After the main shock the microwave radiation anomalies distributed along the Longmenshan faults, and the epicenters of aftershocks were coincident with the anomaly area in space.
基金This work was supported by the National Natural Science Foundation of China(Nos.62272288,61972451,and U22A2041)the Shenzhen Key Laboratory of Intelligent Bioinformatics(No.ZDSYS20220422103800001).
文摘Generating novel molecules to satisfy specific properties is a challenging task in modern drug discovery,which requires the optimization of a specific objective based on satisfying chemical rules.Herein,we aim to optimize the properties of a specific molecule to satisfy the specific properties of the generated molecule.The Matched Molecular Pairs(MMPs),which contain the source and target molecules,are used herein,and logD and solubility are selected as the optimization properties.The main innovative work lies in the calculation related to a specific transformer from the perspective of a matrix dimension.Threshold intervals and state changes are then used to encode logD and solubility for subsequent tests.During the experiments,we screen the data based on the proportion of heavy atoms to all atoms in the groups and select 12365,1503,and 1570 MMPs as the training,validation,and test sets,respectively.Transformer models are compared with the baseline models with respect to their abilities to generate molecules with specific properties.Results show that the transformer model can accurately optimize the source molecules to satisfy specific properties.