期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strengthening Mechanisms of 15 vol.% Al_(2)O_(3) Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing 被引量:1
1
作者 Ke Zhao zhongying duan +2 位作者 Jinling Liu Guozheng Kang Linan An 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第6期915-921,共7页
Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of th... Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of those nanocomposites with high volume fraction(> 10 vol.%) nanoparticles are short of experimental research. In this study, the strengthening mechanisms of high strength Al matrix nanocomposite reinforced with 15 vol.% Al_(2)O_(3) nanoparticles were investigated experimentally and analyzed theoretically. The results show that the thermal mismatch induced geometrically necessary dislocations exhibit a negligible strengthening effect, because of their low density in the nanocomposite that is contradiction to the conventional dislocation punch model. Orowan mechanism makes a major strengthening contribution in view of the deformation process dominated by nanoparticle-dislocation interactions due to the extreme pinning effect of nanoparticles on dislocation motion. In addition, the several mechanisms including grain boundary strengthening, load transfer strengthening, and elastic modulus mismatch induced dislocation strengthening contribute to the strength increase. 展开更多
关键词 Al matrix nanocomposite Strengthening mechanism NANOPARTICLE High volume fraction Microstructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部