期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Identification of MAM1s in Regulation of 3C Glucosinolates Accumulation in Allopolyploid Brassica juncea 被引量:2
1
作者 Zhangping Li Changtong Zhang +4 位作者 Qingze Cai Yulan Zhou zhongyuan hu Mingfang Zhang Jinghua Yang 《Horticultural Plant Journal》 SCIE 2020年第6期409-418,共10页
Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic ... Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic GSLs biosynthesis in this species remains unknown.In this study,we genome-widely identified GSLs metabolic genes,indicating different evolutionary rate of GSLs metabolic genes between subgenomes of B.juncea.Eight methythioalkylmalate synthase(MAMs)homologs were identified from B.juncea,in which six MAM1s were located in chloroplast and the other two were not detected with any expression.Furthermore,BjMAM1-4,BjMAM1-5,and BjMAM1-6 displayed higher expression levels in leaves than other tissues.Silenced expression analysis revealed that BjMAM1-4 and BjMAM1-6 function in 3C and 4C aliphatic GSLs accumulation.The specificity of the substrate selection for the second cycle reaction is much lower than that of the first cycle,suggesting these genes may preferentially catalyze 3C aliphatic GSLs biosynthesis.Our study provides insights into the molecular mechanism underlying the accumulation of 3C aliphatic GSLs,thereby facilitating the manipulation of aliphatic GSLs content in B.juncea. 展开更多
关键词 Brassica juncea ALLOPOLYPLOID 3C aliphatic glucosinolates SINIGRIN MAMs
下载PDF
Eukaryotic Translation Initiation Factors Shape RNA Viruses Resistance in Plants 被引量:2
2
作者 Jannat Shopan Xiaolong Lv +2 位作者 zhongyuan hu Mingfang Zhang Jinghua Yang 《Horticultural Plant Journal》 2020年第2期81-88,共8页
Viruses are representative of a global threat to agricultural production. Genetic resistance is the preferred strategy for the control of viral infection and against loss of crop yield. Viral protein synthesis require... Viruses are representative of a global threat to agricultural production. Genetic resistance is the preferred strategy for the control of viral infection and against loss of crop yield. Viral protein synthesis requires host cellular factors for translating their viral RNAs, and for regulating their replication and cell to cell systemic movement. Therefore, the viruses are dependent on cellular translation factors. Mutations in the gene encoding eIF4E and eIF4G or their isoforms, eIFiso4 E, eIFiso4 G and eIF2Bβ have been mapped as a source of plant potyvirus while other genus of plant virus recessive resistance genes in many species are originated from these loci. Some of other plant translation factors, such as eIF3,eIF4 A-like helicases, eEF1A and eEF1B, which are required in interacting with viral RNAs and regulating various aspects of the infection cycle,have also been identified. Here, we summarized the mechanisms utilized by RNA viruses of eukaryotic plants and the essential roles of e IFs in virus infection. Moreover, we discussed the potential of e IFs as a target gene in the development of genetic resistance to viruses for crop improvement. This review highlighted newly revealed examples of abnormal translational strategies and provided insights into natural host resistance mechanisms that have been linked to 3 cap-independent translational enhancer activity. 展开更多
关键词 EUKARYOTIC translation INITIATION factor genome EDITING 3 cap-independent TRANSLATIONAL ENHANCER virus RESISTANCE
下载PDF
Tomato leaf curl New Delhi virus:an emerging plant begomovirus threatening cucurbit production
3
作者 Lingmin Cai Yuzhen Mei +6 位作者 Ruyi Ye Yun Deng Xuejun Zhang zhongyuan hu Xueping Zhou Mingfang Zhang Jinghua Yang 《aBIOTECH》 EI CAS CSCD 2023年第3期257-266,共10页
Tomato leaf curl New Delhi virus(ToLCNDV),a bipartite begomovirus,was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops.To date,the virus has been reported t... Tomato leaf curl New Delhi virus(ToLCNDV),a bipartite begomovirus,was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops.To date,the virus has been reported to infect more than 11 cucurbit crops,in 16 countries and regions,causing severe yield losses.In autumn 2022,ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China.Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade,and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate(Accession no.OP356207)and the tomato New Delhi ToLCNDV-Severe isolate(Accession no.HM159454).In this review,we summarize the occurrence and distribution,host range,detection and diagnosis,control strategies,and genetic resistance of ToLCNDV in the Cucurbitaceae.We then summarize pathways that could be undertaken to improve our understanding of this emerging disease,with the objective to develop ToLCNDV-resistant cucurbit cultivars. 展开更多
关键词 Tomato leaf curl New Delhi virus CUCURBITS Emerging virus disease Genetic resistance
原文传递
Identification of Flowering Regulatory Genes in Allopolyploid Brassica juncea 被引量:7
4
作者 Ning Zhao Chang Liu +3 位作者 Yiqing Meng zhongyuan hu Mingfang Zhang Jinghua Yang 《Horticultural Plant Journal》 SCIE 2019年第3期109-119,共11页
Brassica juncea is an allopolyploid originating from the interspecific hybridization between Brassica rapa and Brassica nigra, which is of multiple usage as a vegetable, oilseed and condiment worldwide. Both vernaliza... Brassica juncea is an allopolyploid originating from the interspecific hybridization between Brassica rapa and Brassica nigra, which is of multiple usage as a vegetable, oilseed and condiment worldwide. Both vernalization and non-vernalization under long-day photoperiod can promote floral transition in B. juncea suggesting merged flowering pathways of its ancestors and better environmental adaptability. We identified genomewide flowering regulatory genes in B. juncea, which include 84 and 79 genes from A and B sub-genomes, respectively. Ka/Ks analysis revealed a purification effect on both photoperiod and vernalization flowering regulation pathways during evolution. Expression profile of those genes during long-day and vernalization treatments suggested Bju ACO4, Bju AFT1, Bju BFT4, Bju ASOC1 and Bju ASOC4 may be the major functional copies of B. juncea flowering regulation. Further functional studies about Bju COs showed three days delayed flowering time in Bju ACO4 or Bju BCO3 silenced plants. Increased transcription of all BjuFLCs in Bju ACO4 or Bju BCO3 silenced plants suggested interactions between photoperiod and vernalization pathways governing flowering time. Our findings provided flowering regulating networks in allopolyploid B. juncea. 展开更多
关键词 Brassica JUNCEA ALLOPOLYPLOIDY Flower VERNALIZATION PHOTOPERIOD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部