The G-quadruplex(G4)sequences are short fragments of 4-i nterval triple guanine(G)with frequent and ubiquitous distribution in the genome and RNA transcripts.The G4sequences are usually folded into secondary“knot”st...The G-quadruplex(G4)sequences are short fragments of 4-i nterval triple guanine(G)with frequent and ubiquitous distribution in the genome and RNA transcripts.The G4sequences are usually folded into secondary“knot”structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes,including DNA replication and transcription,mRNA translation,and telomere maintenance.Recent structural biological and mouse genetics studies have demonstrated that RHAU(DHX36)can bind and unwind the G4“knots”to modulate embryonic development and postnatal organ function.Deficiency of RHAU gives rise to embryonic lethality,impaired organogenesis,and organ dysfunction.These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier,which plays fundamental roles in development and physiological homeostasis.This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.展开更多
Interorganelle contacts and communications are increasingly recognized to play a vital role in cellular function and homeostasis.In particular,the mitochondria–endoplasmic reticulum(ER)membrane contact site(MAM)is kn...Interorganelle contacts and communications are increasingly recognized to play a vital role in cellular function and homeostasis.In particular,the mitochondria–endoplasmic reticulum(ER)membrane contact site(MAM)is known to regulate ion and lipid transfer,as well as signaling and organelle dynamics.However,the regulatory mechanisms of MAM formation and their function are still elusive.Here,we identify mitochondrial Lon protease(LonP1),a highly conserved mitochondrial matrix protease,as a new MAM tethering protein.The removal of LonP1 substantially reduces MAM formation and causes mitochondrial fragmentation.Furthermore,deletion of LonP1 in the cardiomyocytes of mouse heart impairs MAM integrity and mitochondrial fusion and activates the unfolded protein response within the ER(UPR^(ER)).Consequently,cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming and pathological heart remodeling.These findings demonstrate that LonP1 is a novel MAM-localized protein orchestrating MAM integrity,mitochondrial dynamics,and UPR^(ER),offering exciting new insights into the potential therapeutic strategy for heart failure.展开更多
There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based scre...There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects.Two related compounds with novel structures,named as Cardiomogen 1 and 2(CDMG1 and CDMG2),were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population.We find that Cardiomogen acts as a Wnt inhibitor by targeting p-catenin and reducing Tcf/Lef-mediated transcription in cultured cells.CDMG treatment of amputated zebrafish hearts reduces nuclear p-catenin in injured heart tissue,increases cardiomyocyte(CM)proliferation,and expedites wound healing,thus accelerating cardiac muscle regeneration.Importantly,Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction.Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue,which are in part attributable to the^-catenin reduction.Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration,highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.展开更多
The tuberous sclerosis complex I (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR), which serves as a key regulator of inflammatory responses after bacterial stimulation in monocy...The tuberous sclerosis complex I (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR), which serves as a key regulator of inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells. Previous studies have shown that TSC1 knockout (KO) macrophages produced increased inflammatory responses including tumor necrosis factor-a (TNF-a) and IL-12 to pro-inflammatory stimuli, but whether and how TSC1 regulates pro-lL-lJ~ expression remains unclear. Here using a mouse model in which myeloid lineage-specific deletion of TSC1 leads to constitutive mTORC1 activation, we found that TSC1 deficiency resulted in impaired expression of pro-I L-1β in macrophages following l ipopolysaccharide stimulation. Such decreased pro-I L-1β expression in TSC1 KO macrophages was rescued by reducing mTORC1 activity with rapamycin or deletion of mTOR. Rictor deficiency has no detectable effect on pro-lL-1β synthesis, suggesting that TSC1 positively controls pro-1L-1β expression through mTORC 1 pathway. Moreover, mechanism studies suggest that mTORC 1-mediated downregulation of the CCAAT enhancer-binding protein (C/EBPβ) critically contributes to the defective pro-lL-1β expression. Overall, these findings highlight a critical role of TSC1 in regulating innate immunity by control of the mTOR1-C/EBPβ pathway.展开更多
Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps...Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps of hematopoiesisin mouse models. However, whether similar function of GATA2 is conserved in human hematopoiesis, especially duringearly embryonic development stage, is largely unknown.Results: To examine the role of GATA2 in human background, we generated homozygous GATA2 knockout humanembryonic stem cells (GATA2^(−/−) hESCs) and analyzed their blood differentiation potential. Our results demonstratedthat GATA2^(−/−) hESCs displayed attenuated generation of CD34^(+)CD43^(+) hematopoietic progenitor cells (HPCs), due tothe impairment of endothelial to hematopoietic transition (EHT). Interestingly, GATA2^(−/−) hESCs retained the potentialto generate erythroblasts and macrophages, but never granulocytes. We further identified that SPI1 downregulationwas partially responsible for the defects of GATA2^(−/−) hESCs in generation of CD34^(+)CD43^(+) HPCs and granulocytes.Furthermore, we found that GATA2^(−/−) hESCs restored the granulocyte potential in the presence of Notch signaling.Conclusion: Our findings revealed the essential roles of GATA2 in EHT and granulocyte development throughregulating SPI1, and uncovered a role of Notch signaling in granulocyte generation during hematopoiesis modeled byhuman ESCs.展开更多
Dear Editor,Tetralogy of Fallot(TOF)is the most common complex congenital heart disease.Besides gene mutations and copy number variants,altered protein function induced by posttranscriptional or translational regulati...Dear Editor,Tetralogy of Fallot(TOF)is the most common complex congenital heart disease.Besides gene mutations and copy number variants,altered protein function induced by posttranscriptional or translational regulation also contributes to the onset of TOF.1 MiRNAs are short noncoding RNAs that bind to the 3’-UTR of target mRNAs to repress protein production.However,the causal link between miRNAs and TOF and the underlying mechanism has not been established.展开更多
基金National Key Research and Development Program of ChinaGrant/Award Number:2019YFA0801601+1 种基金National Natural Science Foundation of ChinaGrant/Award Number:31930029,91854111 and 31571490。
文摘The G-quadruplex(G4)sequences are short fragments of 4-i nterval triple guanine(G)with frequent and ubiquitous distribution in the genome and RNA transcripts.The G4sequences are usually folded into secondary“knot”structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes,including DNA replication and transcription,mRNA translation,and telomere maintenance.Recent structural biological and mouse genetics studies have demonstrated that RHAU(DHX36)can bind and unwind the G4“knots”to modulate embryonic development and postnatal organ function.Deficiency of RHAU gives rise to embryonic lethality,impaired organogenesis,and organ dysfunction.These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier,which plays fundamental roles in development and physiological homeostasis.This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.
基金grants from National Natural Science Foundation of China(91954101,31771534,31570772,and 31070710 to B.L.and 81774022 to L.J.)National Basic Research Program of China(973 Program,2013CB531702 to B.L.and 2013CB531704 to G.Y.)the Scientific Research Foundation of University of South China(211RJC002 to B.L.).
文摘Interorganelle contacts and communications are increasingly recognized to play a vital role in cellular function and homeostasis.In particular,the mitochondria–endoplasmic reticulum(ER)membrane contact site(MAM)is known to regulate ion and lipid transfer,as well as signaling and organelle dynamics.However,the regulatory mechanisms of MAM formation and their function are still elusive.Here,we identify mitochondrial Lon protease(LonP1),a highly conserved mitochondrial matrix protease,as a new MAM tethering protein.The removal of LonP1 substantially reduces MAM formation and causes mitochondrial fragmentation.Furthermore,deletion of LonP1 in the cardiomyocytes of mouse heart impairs MAM integrity and mitochondrial fusion and activates the unfolded protein response within the ER(UPR^(ER)).Consequently,cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming and pathological heart remodeling.These findings demonstrate that LonP1 is a novel MAM-localized protein orchestrating MAM integrity,mitochondrial dynamics,and UPR^(ER),offering exciting new insights into the potential therapeutic strategy for heart failure.
基金This research was supported in part by grants from the National Natural Science Foundation of China(NSFC315300A4,NSFC31471357,and NSFC31172173 to T.P.Z.).
文摘There are intense interests in discovering pro regenerative medicine leads that can promote cardiac differentiation and regeneration,as well as repair damaged heart tissues.We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects.Two related compounds with novel structures,named as Cardiomogen 1 and 2(CDMG1 and CDMG2),were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population.We find that Cardiomogen acts as a Wnt inhibitor by targeting p-catenin and reducing Tcf/Lef-mediated transcription in cultured cells.CDMG treatment of amputated zebrafish hearts reduces nuclear p-catenin in injured heart tissue,increases cardiomyocyte(CM)proliferation,and expedites wound healing,thus accelerating cardiac muscle regeneration.Importantly,Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction.Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue,which are in part attributable to the^-catenin reduction.Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration,highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.
文摘The tuberous sclerosis complex I (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR), which serves as a key regulator of inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells. Previous studies have shown that TSC1 knockout (KO) macrophages produced increased inflammatory responses including tumor necrosis factor-a (TNF-a) and IL-12 to pro-inflammatory stimuli, but whether and how TSC1 regulates pro-lL-lJ~ expression remains unclear. Here using a mouse model in which myeloid lineage-specific deletion of TSC1 leads to constitutive mTORC1 activation, we found that TSC1 deficiency resulted in impaired expression of pro-I L-1β in macrophages following l ipopolysaccharide stimulation. Such decreased pro-I L-1β expression in TSC1 KO macrophages was rescued by reducing mTORC1 activity with rapamycin or deletion of mTOR. Rictor deficiency has no detectable effect on pro-lL-1β synthesis, suggesting that TSC1 positively controls pro-1L-1β expression through mTORC 1 pathway. Moreover, mechanism studies suggest that mTORC 1-mediated downregulation of the CCAAT enhancer-binding protein (C/EBPβ) critically contributes to the defective pro-lL-1β expression. Overall, these findings highlight a critical role of TSC1 in regulating innate immunity by control of the mTOR1-C/EBPβ pathway.
基金This work was supported by the following:National Basic Research Program of China,973 Program of China(2012CB966503,2011CB965204,2014CB964604)“Strategic Priority Research Program”of the Chinese Academy of Sciences Grant No.XDA01020202+3 种基金National Natural Science Foundation of China(31371514,31200970,81301340)National Natural Science Foundation-Guangdong Joint Fund No.U1132005,National S&T Major Special Project on Major New Drug Innovation,Grant No.2011ZX09102010“Hundred Talents Program”of Chinese Academy of Sciences(to Dr.G Pan)the Equipment Function Development&Technology Innovation Project of the Chinese Academy of Sciences(Grant Nos.yg2012049,yg2011082,and yg2011083)。
文摘Background: Hematopoiesis is a progressive process collectively controlled by an elaborate network of transcriptionfactors (TFs). Among these TFs, GATA2 has been implicated to be critical for regulating multiple steps of hematopoiesisin mouse models. However, whether similar function of GATA2 is conserved in human hematopoiesis, especially duringearly embryonic development stage, is largely unknown.Results: To examine the role of GATA2 in human background, we generated homozygous GATA2 knockout humanembryonic stem cells (GATA2^(−/−) hESCs) and analyzed their blood differentiation potential. Our results demonstratedthat GATA2^(−/−) hESCs displayed attenuated generation of CD34^(+)CD43^(+) hematopoietic progenitor cells (HPCs), due tothe impairment of endothelial to hematopoietic transition (EHT). Interestingly, GATA2^(−/−) hESCs retained the potentialto generate erythroblasts and macrophages, but never granulocytes. We further identified that SPI1 downregulationwas partially responsible for the defects of GATA2^(−/−) hESCs in generation of CD34^(+)CD43^(+) HPCs and granulocytes.Furthermore, we found that GATA2^(−/−) hESCs restored the granulocyte potential in the presence of Notch signaling.Conclusion: Our findings revealed the essential roles of GATA2 in EHT and granulocyte development throughregulating SPI1, and uncovered a role of Notch signaling in granulocyte generation during hematopoiesis modeled byhuman ESCs.
基金supported by grants from the National Key R&D Program of China(2021YFC2701101,H.W.)the National Natural Science Foundation of China(81930036 and 82150008,H.W.)the Commission for Science and Technology of Shanghai Municipality(20JC1418500,H.W.).
文摘Dear Editor,Tetralogy of Fallot(TOF)is the most common complex congenital heart disease.Besides gene mutations and copy number variants,altered protein function induced by posttranscriptional or translational regulation also contributes to the onset of TOF.1 MiRNAs are short noncoding RNAs that bind to the 3’-UTR of target mRNAs to repress protein production.However,the causal link between miRNAs and TOF and the underlying mechanism has not been established.