Here we use an analytical method to determine δ^13C in local plants and organic matter in the soils above Furong cave, Chong- qing, China. We also monitored d13C in dissolved inorganic carbon (DIC) of drip water, ...Here we use an analytical method to determine δ^13C in local plants and organic matter in the soils above Furong cave, Chong- qing, China. We also monitored d13C in dissolved inorganic carbon (DIC) of drip water, δ^13C of active deposits under the drip waters, and the concentration of air CO2 (PCO2). Based on these, we preliminarily studied the transportation characteristics of stable carbon isotope (^13C) in cave system of the subtropical karst area. The average δ^13C value of 27 local plant samples, which belong to 16 families, was -32% and the weighted δ^13C for surface dry biomass was -33%0. We found that for 54 soil samples collected from 5 soil profiles, δ^13C of soil organic matters was -22%o, which could be attributed to the different trans- portation rates of stable carbon isotopes during the decomposition of plants and organic matters in soils. The relatively lighter 12C tended to transfer into gaseous CO2, which made the relatively heavier ^13C concentrated in the soils. On the basis of moni- toring of DIC- δ^13C in drip waters from July 2009 to June 2010, we found that values in winter months were heavier and values in summer months were lighter in general, the reason of which was that in summer months, both the temperature and the hu- midity were comparatively higher, resulted in more CO2 with lighter δ^13C generated from organic matters decomposition and plants respiration. The average DIC- δ^13C value was -11%o, about 11%o heavier than the δ^13C of organic matters in soils, which proved that part of DIC in cave drip water was sourced from dissolution of inorganic carbonate (host rock, with heavier δ^13C. As for the δ^13C of active deposits at five drip water sites in Furong cave, they had almost the same variation with relatively light values. In other words, these active speleothems were deposited at equilibrium conditions for isotopic fractionation. These results suggest that the carbon isotopic information of speleothems could be used to track the evolution of local vegetation in certain situations.展开更多
识别黄河流域绿色发展效率及其时空演进规律,有助于区域产业布局、环境规制与政策制定,进而实现黄河流域生态保护和高质量发展。针对黄河流域异质化发展,结合经济发展和环境治理的区域发展规律,构建多周期两阶段DEA模型(Multi-period tw...识别黄河流域绿色发展效率及其时空演进规律,有助于区域产业布局、环境规制与政策制定,进而实现黄河流域生态保护和高质量发展。针对黄河流域异质化发展,结合经济发展和环境治理的区域发展规律,构建多周期两阶段DEA模型(Multi-period two-stage DEA model),通过测算绿色经济效率与绿色创新效率,实现黄河流域省市的绿色发展效率测度,同时借助ArcGIS10.6软件对黄河流域省域绿色发展的时空格局进行了动态演进并分析其发展路径。结果表明:黄河流域空间维度呈现上游较差、中游一般、下游最优的发展不均衡现状;时间维度呈现“W”型波动式上升趋势,但整体一般;存在省份绿色发展水平较高、黄河段城市却较差的发展不一致现象。针对黄河流域省市的各种发展情境,从省市协同治理、政府引导、产业结构、科技研发、税收政策等方面提出了建议。展开更多
基金supported by Open Foundation of the Karst Dynamics Laboratory,China (Grant Nos.GKN0842008 and KDL2008-08)National Natural Science Foundation of China (Grant Nos.40802035,41030103,41172165 and 40971122)+1 种基金Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS,China (Grant No. SKLLQG0907)Key Project of Special Research Foundation of Southwest University,China (Grant Nos. XDJK2009B016 and XDJK2009C106)
文摘Here we use an analytical method to determine δ^13C in local plants and organic matter in the soils above Furong cave, Chong- qing, China. We also monitored d13C in dissolved inorganic carbon (DIC) of drip water, δ^13C of active deposits under the drip waters, and the concentration of air CO2 (PCO2). Based on these, we preliminarily studied the transportation characteristics of stable carbon isotope (^13C) in cave system of the subtropical karst area. The average δ^13C value of 27 local plant samples, which belong to 16 families, was -32% and the weighted δ^13C for surface dry biomass was -33%0. We found that for 54 soil samples collected from 5 soil profiles, δ^13C of soil organic matters was -22%o, which could be attributed to the different trans- portation rates of stable carbon isotopes during the decomposition of plants and organic matters in soils. The relatively lighter 12C tended to transfer into gaseous CO2, which made the relatively heavier ^13C concentrated in the soils. On the basis of moni- toring of DIC- δ^13C in drip waters from July 2009 to June 2010, we found that values in winter months were heavier and values in summer months were lighter in general, the reason of which was that in summer months, both the temperature and the hu- midity were comparatively higher, resulted in more CO2 with lighter δ^13C generated from organic matters decomposition and plants respiration. The average DIC- δ^13C value was -11%o, about 11%o heavier than the δ^13C of organic matters in soils, which proved that part of DIC in cave drip water was sourced from dissolution of inorganic carbonate (host rock, with heavier δ^13C. As for the δ^13C of active deposits at five drip water sites in Furong cave, they had almost the same variation with relatively light values. In other words, these active speleothems were deposited at equilibrium conditions for isotopic fractionation. These results suggest that the carbon isotopic information of speleothems could be used to track the evolution of local vegetation in certain situations.
文摘识别黄河流域绿色发展效率及其时空演进规律,有助于区域产业布局、环境规制与政策制定,进而实现黄河流域生态保护和高质量发展。针对黄河流域异质化发展,结合经济发展和环境治理的区域发展规律,构建多周期两阶段DEA模型(Multi-period two-stage DEA model),通过测算绿色经济效率与绿色创新效率,实现黄河流域省市的绿色发展效率测度,同时借助ArcGIS10.6软件对黄河流域省域绿色发展的时空格局进行了动态演进并分析其发展路径。结果表明:黄河流域空间维度呈现上游较差、中游一般、下游最优的发展不均衡现状;时间维度呈现“W”型波动式上升趋势,但整体一般;存在省份绿色发展水平较高、黄河段城市却较差的发展不一致现象。针对黄河流域省市的各种发展情境,从省市协同治理、政府引导、产业结构、科技研发、税收政策等方面提出了建议。