具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上...具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上求解精度不够高的不足,提出基于拉马克进化的DE(Lamarckian evolution-based DE,LEDE)算法,将贪心修复优化算子产生的改进遗传给后代,以加快DE算法的收敛速度,提高DE算法在高维KPC实例上的求解精度。同时,在贪心修复优化算子中引入基于价值的贪心优化策略,用于优化使用基于价值密度的贪心修复策略生成的可行解,以帮助算法跳出局部最优。在40个KPC实例上对LEDE算法进行了实验分析,结果表明拉马克进化和基于价值的贪心优化策略能够提高LEDE算法的求精能力,LEDE算法在获得最优解和平均解方面均优于其他智能优化算法。展开更多
文摘具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上求解精度不够高的不足,提出基于拉马克进化的DE(Lamarckian evolution-based DE,LEDE)算法,将贪心修复优化算子产生的改进遗传给后代,以加快DE算法的收敛速度,提高DE算法在高维KPC实例上的求解精度。同时,在贪心修复优化算子中引入基于价值的贪心优化策略,用于优化使用基于价值密度的贪心修复策略生成的可行解,以帮助算法跳出局部最优。在40个KPC实例上对LEDE算法进行了实验分析,结果表明拉马克进化和基于价值的贪心优化策略能够提高LEDE算法的求精能力,LEDE算法在获得最优解和平均解方面均优于其他智能优化算法。