期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intelligent Predetermination of Generator Tripping Scheme: Knowledge Fusion-based Deep Reinforcement Learning Framework
1
作者 lingkang Zeng Wei Yao +4 位作者 Ze Hu Hang Shuai zhouping li Jinyu Wen Shijie Cheng 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第1期66-75,共10页
Generator tripping scheme(GTS)is the most commonly used scheme to prevent power systems from losing safety and stability.Usually,GTS is composed of offline predetermination and real-time scenario match.However,it is e... Generator tripping scheme(GTS)is the most commonly used scheme to prevent power systems from losing safety and stability.Usually,GTS is composed of offline predetermination and real-time scenario match.However,it is extremely time-consuming and labor-intensive for manual predetermination for a large-scale modern power system.To improve efficiency of predetermination,this paper proposes a framework of knowledge fusion-based deep reinforcement learning(KF-DRL)for intelligent predetermination of GTS.First,the Markov Decision Process(MDP)for GTS problem is formulated based on transient instability events.Then,linear action space is developed to reduce dimensionality of action space for multiple controllable generators.Especially,KF-DRL leverages domain knowledge about GTS to mask invalid actions during the decision-making process.This can enhance the efficiency and learning process.Moreover,the graph convolutional network(GCN)is introduced to the policy network for enhanced learning ability.Numerical simulation results obtained on New England power system demonstrate superiority of the proposed KF-DRL framework for GTS over the purely data-driven DRL method. 展开更多
关键词 Deep reinforcement learning generator tripping scheme graph convolutional network invalid action masking knowledgefusion
原文传递
增维非光滑估计方程的刀切经验似然方法
2
作者 韦阳 李周平 杨帆 《中国科学:数学》 CSCD 北大核心 2019年第8期1103-1118,共16页
本文考虑具有非光滑U-统计量结构的估计方程中增维参数的估计问题,这一情形下,本文利用刀切经验似然方法对参数进行统计推断,并在一定正则条件下,证明所构造刀切似然统计量的渐近性质.最后,通过Monte Carlo数值模拟和实际数据分析,说明... 本文考虑具有非光滑U-统计量结构的估计方程中增维参数的估计问题,这一情形下,本文利用刀切经验似然方法对参数进行统计推断,并在一定正则条件下,证明所构造刀切似然统计量的渐近性质.最后,通过Monte Carlo数值模拟和实际数据分析,说明本文所提方法的优势. 展开更多
关键词 高维数据 刀切经验似然 非光滑 估计方程 U-统计量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部