Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601-3619] constructed a new family of finite-dimensional modular Lie superalgebra Ω. Let Ω denote the even part of the Lie superalgebra Ω. We first give the gen...Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601-3619] constructed a new family of finite-dimensional modular Lie superalgebra Ω. Let Ω denote the even part of the Lie superalgebra Ω. We first give the generator sets of the Lie algebra Ω. Then, we reduce the derivation of Ω to a certain form. With the reduced derivation and a torus of Ω, we determine the derivation algebra of Ω.展开更多
文摘Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601-3619] constructed a new family of finite-dimensional modular Lie superalgebra Ω. Let Ω denote the even part of the Lie superalgebra Ω. We first give the generator sets of the Lie algebra Ω. Then, we reduce the derivation of Ω to a certain form. With the reduced derivation and a torus of Ω, we determine the derivation algebra of Ω.