This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kur...This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kurtoses as a contrast function, the obtained signal-adaptive activation function automatically satisfies the local stability and robustness conditions. The SAA-BSS exploits the natural gradient learning on the Stiefel manifold, and it is an equivariant algorithm with a moderate computational load. Computer simulations show that the SAA-BSS can perform blind separation of mixed sub-Gaussian and super-Gaussian signals and it works more efficiently than the existing algorithms in convergence speed and robustness against outliers.展开更多
基金Supported by the major program of the National Natural Science Foundation of China (No.60496311)the Chinese Postdoctoral Science Foundation (No.2004035061)the Foundation of Intel China Research Center.
文摘This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kurtoses as a contrast function, the obtained signal-adaptive activation function automatically satisfies the local stability and robustness conditions. The SAA-BSS exploits the natural gradient learning on the Stiefel manifold, and it is an equivariant algorithm with a moderate computational load. Computer simulations show that the SAA-BSS can perform blind separation of mixed sub-Gaussian and super-Gaussian signals and it works more efficiently than the existing algorithms in convergence speed and robustness against outliers.