The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The ana...The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The analytic solutions for this problem and the motion equation of cavity that describes cavity formation and growth with time are obtained. The e?ect of radial perturbation of the materials on cavity formation and its motion is discussed. The plane of the perturbation parameters of the materials is divided into four regions. The existential conditions and qualitative properties of solutions of the motion equation of the cavity are studied in di?erent parameters’ regions in detail. It is proved that the cavity motion with time is a nonlinear periodic vibration. The vibration center is then determined.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10272069) and Shanghai Key Project Program.
文摘The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The analytic solutions for this problem and the motion equation of cavity that describes cavity formation and growth with time are obtained. The e?ect of radial perturbation of the materials on cavity formation and its motion is discussed. The plane of the perturbation parameters of the materials is divided into four regions. The existential conditions and qualitative properties of solutions of the motion equation of the cavity are studied in di?erent parameters’ regions in detail. It is proved that the cavity motion with time is a nonlinear periodic vibration. The vibration center is then determined.