The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC c...The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.展开更多
Carbon fibre reinforced carbon and SiC dual matrices composites (C/C-SiC) show superior tribological properties,high thermal shock resistance and good abrasive resistance,and they are promising candidates for advanc...Carbon fibre reinforced carbon and SiC dual matrices composites (C/C-SiC) show superior tribological properties,high thermal shock resistance and good abrasive resistance,and they are promising candidates for advanced brake and clutch systems.The microstructure,mechanical properties,friction and wear properties,and application of the C/C-SiC composites fabricated by warm compacted-in situ reaction were introduced.The results indicated that the composites were composed of 50-60 wt pct carbon,2-10 wt pct residual silicon and 30-40 wt pct silicon carbide.The C/C-SiC brake composites exhibited good mechanical properties.The value of flexural strength and compressive strength could reach 160 and 112 MPa,respectively.The impact strength was about 2.5 kJ·m-2.The C/C-SiC brake composites showed excellent tribological performance,including high coefficient of friction (0.38),good abrasive resistance (1.10 μm/cycle) and brake steadily on dry condition.The tribological properties on wet condition could be mostly maintained.The silicon carbide matrix in C/C-SiC brake composites improved the wear resistance,and the graphite played the lubrication function,and right volume content of graphite was helpful to forming friction film to reduce the wear rate.These results showed that C/C-SiC composites fabricated by warm compacted-in situ reaction had excellent properties for use as brake materials.展开更多
Recent progress by versatile approaches supports the new hypothesis that multi-potent hematopoietic stein cells (HSCs) are directly formed from a rare population of endothelial cells in mid-gestation mouse embryos. ...Recent progress by versatile approaches supports the new hypothesis that multi-potent hematopoietic stein cells (HSCs) are directly formed from a rare population of endothelial cells in mid-gestation mouse embryos. This process is therefore known as the endothelial-to- hematopoietic transition (EHT). Nevertheless, there is no functional evidence that documents the HSC transition from purified endothelial cells. In this study, we developed an OP9-DLl-based co-culture system that was able to facilitate the HSC specification and/or expansion in vitro of mouse embryonic day 10.5 (El0.5) Tie2~ cells remarkably. Then, the immunophenotypically defined endothelial ceils were harvested by a combination of surface markers (Flkl+CD31 ~CD41 CD45 Ter119 ) from the caudal half of EI0.0-EI 1.0 mouse embryos. The transplantation of the endothelia/OP9-DL1 co-cultures led to long-term, high-level, multi-lineage, and multi-organ he- matopoietic reconstitution in the irradiated adult recipients. The induced HSC activity was initially observed at El0.5, and a significant increase was detected at El 1.0, which suggests a temporally specific regulation. Taken together, tbr the first time, we provide functional evidence showing the HSC potential of purified embryonic endothelial cells, which is indispensable for the emerging EHT concept. Moreover, the newly defined co-culture system will aid the exploration of the key molecules governing the HSC transition from embryonic and even postnatal endothelial cells, which has enormous significance in basic and translational research.展开更多
Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/car...Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/carbon and boron nitride dual matrix composites(C/C-BN). Microstructures and mechanical properties of C/C composites with three different volume contents of h-BN powders were investigated in comparison to pure C/C composites. Results indicated that the introduction of h-BN powders into C/C composites significantly reduced the size of Py C and the anisotropy of thermal contraction in matrix,leading to a gradual disappearance of ring defects as the h-BN content increased. In addition, an enhanced interfacial bonding between fiber and matrix obtained due to higher-textured Py C and rougher fiber surface. Thereby, the flexural strengths and modulus of as-prepared composites decreased firstly and then increased, while the impact toughness presented a decreasing tendency as the content of BN powders increased. Furthermore, with the increasing of h-BN content, anisotropies of compressive properties were weakened, and the compressive strength of C/C-BN composites were always higher than that of pure C/C composit. However, when C/C composites modified by 13.5 vol% content of h-BN, excessive loose BN aggregates appeared in C/C-BN composites, leading to a relatively slight reduction of compressive strength.展开更多
基金Project(51575536)supported by the National Natural Science Foundation of ChinaProject(2016YFB0301403)supported by the National Key Research and Development Program of ChinaProject(2017zzts435)supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.
基金supported by the National Hi-Tech Research Development Program of China (No.2006AA03Z560)Excellent Youth of Hunan Province,China (No. 06JJ1007)
文摘Carbon fibre reinforced carbon and SiC dual matrices composites (C/C-SiC) show superior tribological properties,high thermal shock resistance and good abrasive resistance,and they are promising candidates for advanced brake and clutch systems.The microstructure,mechanical properties,friction and wear properties,and application of the C/C-SiC composites fabricated by warm compacted-in situ reaction were introduced.The results indicated that the composites were composed of 50-60 wt pct carbon,2-10 wt pct residual silicon and 30-40 wt pct silicon carbide.The C/C-SiC brake composites exhibited good mechanical properties.The value of flexural strength and compressive strength could reach 160 and 112 MPa,respectively.The impact strength was about 2.5 kJ·m-2.The C/C-SiC brake composites showed excellent tribological performance,including high coefficient of friction (0.38),good abrasive resistance (1.10 μm/cycle) and brake steadily on dry condition.The tribological properties on wet condition could be mostly maintained.The silicon carbide matrix in C/C-SiC brake composites improved the wear resistance,and the graphite played the lubrication function,and right volume content of graphite was helpful to forming friction film to reduce the wear rate.These results showed that C/C-SiC composites fabricated by warm compacted-in situ reaction had excellent properties for use as brake materials.
基金supported by the Chinese National Key Program on Basic Research(Nos.2011CB964800 and 2012CB966904)the National Natural Science Foundation of China(No. 30911130360)
文摘Recent progress by versatile approaches supports the new hypothesis that multi-potent hematopoietic stein cells (HSCs) are directly formed from a rare population of endothelial cells in mid-gestation mouse embryos. This process is therefore known as the endothelial-to- hematopoietic transition (EHT). Nevertheless, there is no functional evidence that documents the HSC transition from purified endothelial cells. In this study, we developed an OP9-DLl-based co-culture system that was able to facilitate the HSC specification and/or expansion in vitro of mouse embryonic day 10.5 (El0.5) Tie2~ cells remarkably. Then, the immunophenotypically defined endothelial ceils were harvested by a combination of surface markers (Flkl+CD31 ~CD41 CD45 Ter119 ) from the caudal half of EI0.0-EI 1.0 mouse embryos. The transplantation of the endothelia/OP9-DL1 co-cultures led to long-term, high-level, multi-lineage, and multi-organ he- matopoietic reconstitution in the irradiated adult recipients. The induced HSC activity was initially observed at El0.5, and a significant increase was detected at El 1.0, which suggests a temporally specific regulation. Taken together, tbr the first time, we provide functional evidence showing the HSC potential of purified embryonic endothelial cells, which is indispensable for the emerging EHT concept. Moreover, the newly defined co-culture system will aid the exploration of the key molecules governing the HSC transition from embryonic and even postnatal endothelial cells, which has enormous significance in basic and translational research.
基金the financial supports from the Natural Science Foundation of Hunan Province (Grant No. 2019JJ50768)National Natural Science Foundation of China (Grant No. 51575536)+1 种基金the National High Technology Research and Development Program (Grant No. 2015AA033503)Graduate degree thesis Innovation Foundation of Central South University (Grant No. 2018ZZTS414)
文摘Hexagonal boron nitride(h-BN) powders were introduced into carbon fiber preform by powder addition and subsequent combined with chemical vapor infiltration(CVI) for densification to prepare carbon fiber reinforced/carbon and boron nitride dual matrix composites(C/C-BN). Microstructures and mechanical properties of C/C composites with three different volume contents of h-BN powders were investigated in comparison to pure C/C composites. Results indicated that the introduction of h-BN powders into C/C composites significantly reduced the size of Py C and the anisotropy of thermal contraction in matrix,leading to a gradual disappearance of ring defects as the h-BN content increased. In addition, an enhanced interfacial bonding between fiber and matrix obtained due to higher-textured Py C and rougher fiber surface. Thereby, the flexural strengths and modulus of as-prepared composites decreased firstly and then increased, while the impact toughness presented a decreasing tendency as the content of BN powders increased. Furthermore, with the increasing of h-BN content, anisotropies of compressive properties were weakened, and the compressive strength of C/C-BN composites were always higher than that of pure C/C composit. However, when C/C composites modified by 13.5 vol% content of h-BN, excessive loose BN aggregates appeared in C/C-BN composites, leading to a relatively slight reduction of compressive strength.