We report a mechanistic understanding of a moisture-driven intermediate-phase transition that improves the quality of perovskite thin films based on a lead-acetate precursor, improving the power-conversion effidency. ...We report a mechanistic understanding of a moisture-driven intermediate-phase transition that improves the quality of perovskite thin films based on a lead-acetate precursor, improving the power-conversion effidency. We clarify the composition of the intermediate phase and attribute the transition of this phase to the hygroscopic nature of the organic product, i.e., methylammonium acetate. Thermal annealing aids in the coarsening of the grains. These decoupled processes result in better crystal formation with a lower spatial and energetic distribution of traps. Thermal annealing of the films without exposure to air results in a faster intermediate-phase transition and grain coarsening, which occur simultaneously, leading to disorder in the films and a higher deep trap-state density. Our results indicate the need for a humid environment for the growth of high-quality perovskite films and provide insight into intermediate-phase dissociation and conversion kinetics. Thus, they are useful for the large-scale production of effident solution-processed perovskite solar cells.展开更多
基金Acknowledgements Y. Y. acknowledges TcSUH Core Funding. The authors acknowledge the support of Steve Ziegler and Dr. Gilbert Min for help with KPFM imaging. J. M. B. acknowledges support from the National Science Foundation (No. ECCS-1240510) and the Robert A. Welch Foundation (No. E-1728).
文摘We report a mechanistic understanding of a moisture-driven intermediate-phase transition that improves the quality of perovskite thin films based on a lead-acetate precursor, improving the power-conversion effidency. We clarify the composition of the intermediate phase and attribute the transition of this phase to the hygroscopic nature of the organic product, i.e., methylammonium acetate. Thermal annealing aids in the coarsening of the grains. These decoupled processes result in better crystal formation with a lower spatial and energetic distribution of traps. Thermal annealing of the films without exposure to air results in a faster intermediate-phase transition and grain coarsening, which occur simultaneously, leading to disorder in the films and a higher deep trap-state density. Our results indicate the need for a humid environment for the growth of high-quality perovskite films and provide insight into intermediate-phase dissociation and conversion kinetics. Thus, they are useful for the large-scale production of effident solution-processed perovskite solar cells.