The Hexi Corridor,our study area,is located in Northwest China and is also the most developed area of oasis farming in arid regions of Northwestern China.However,the rapid development of metallurgy and chemical indust...The Hexi Corridor,our study area,is located in Northwest China and is also the most developed area of oasis farming in arid regions of Northwestern China.However,the rapid development of metallurgy and chemical industries in this region poses a great threat to the accumulation of heavy metals in crops.The objectives of this study are(1)to determine the influence of heavy metals on plant growth;(2)to assess the translocation capability of heavy metals in soil-plant system;and(3)to investigate the interaction between heavy metals.Pot experiments were conducted on cole(Brassica campestris L.)grown in the arid oasis soils singly and jointly treated with cadmium(Cd)and lead(Pb).Nine treatments were applied into the pots.Under the same planting conditions,three scenarios of Cd,Pb and Cd–Pb were designed to compare the interaction between Cd and Pb.The results showed that the response of cole weights to Cd,Pb and Cd–Pb treatments was slight,while Cd and Pb uptakes in cole were more sensitive to the single effects of Cd and Pb concentration in soils from the lower treatment levels.Under the influence of the single Cd,Pb and joint Cd–Pb treatments,Cd concentrations were lower in the cole roots than in the shoots,while for Pb,the results were opposite.Comparison studies revealed that the interaction of Cd and Pb could weaken the cole’s ability to uptake,concentrate and translocate heavy metals in arid oasis soils.展开更多
A pot experiment was conducted to study the bioaccumulation and translocation of cadmium (Cd) in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the Cd-polluted oasis soil, Northwest of Chin...A pot experiment was conducted to study the bioaccumulation and translocation of cadmium (Cd) in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the Cd-polluted oasis soil, Northwest of China. The results showed that Cd in the unpolluted oasis soil was mainly bound to carbonate fraction (F2) and Fe-Mn oxide fraction (F3). However, marked change of Cd fractions was observed with increasing soil Cd concentrations, in which the concentration of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p 〈 0.001 for F1, F2 and F3). The growth of cole and celery could be facilitated by low concentrations of Cd, but inhibited by high cortcentmdons. The correlation analysis between the fraction distribution coefficient of Cd in the soil and Cd concentration accumulated in the two vegetables showed that Cd in F1 in the soil made the greatest contribution on the accumulation of Cd in the two vegetables. The high bio-eoncentration factor and the translocation factor of Cd in both cote and celery were observed, and Cd had higher accumulation in the edible parts of the two vegetables. Therefore, both cole and celery grown in Cd-polluted oasis soil have higher risk to human health. And the two vegetables are not suitable to be cultivated as vegetables consumed by human in the Cd-polluted oasis soil.展开更多
A pot experiment was conducted to study the relationship between distribution of cadmium (Cd) and zinc (Zn) and their availability. to cole (Brassica campestris L.) grown in the multi-metal contaminated oasis so...A pot experiment was conducted to study the relationship between distribution of cadmium (Cd) and zinc (Zn) and their availability. to cole (Brassica campestris L.) grown in the multi-metal contaminated oasis soil in northwest of China. The results showed that Cd and Zn in the unpolluted oasis soil was mainly found in the residual fractionation, however, with increasing contents of Cd and Zn in the oasis soil, the distribution of Cd and Zn changed significantly. The growth of cole could be promoted by low Cd and Zn concentration, but significantly restrained by high concentrations. There was antagonistic effect among Cd and Zn in the multi-metals contaminated oasis soil. Stepwise regression analysis between fractionations distribution coefficients of the two meals in the soil and their contents in cole showed that both Cd and Zn in the exchangeable fractionation in the oasis soil made the most contribution on the uptake of Cd and Zn in cole. The bio-concentration factor (BCF) of Cd was greater than Zn in cole, and BCFs of the two metals in leaves were greater than those in roots. The translocation factors of the two metals in cole were greater than 1, and the two metals mainly accumulated in the edible parts in cole. Therefore, cole is not a suitable vegetable for the oasis soil because of the plants notable contamination by heavy metals.展开更多
In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after ads...In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques.The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II).The maximum adsorption capacities of lead and cadmium are respectively 105.807,37.986 mg/g.The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity(under optimal conditions).Moreover,it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process.It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh.Overall,the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.展开更多
A magnesium doped ferrihydrite-humic acid coprecipitation(Mg-doped Fh-HA)was synthesized by coprecipitation method.The removal of heavy metals such as Pb(Ⅱ)and Cd(Ⅱ)was assessed.The isotherms and kinetic studies ind...A magnesium doped ferrihydrite-humic acid coprecipitation(Mg-doped Fh-HA)was synthesized by coprecipitation method.The removal of heavy metals such as Pb(Ⅱ)and Cd(Ⅱ)was assessed.The isotherms and kinetic studies indicated that the Mg-doped Fh-HA exhibited a remarkable Pb(Ⅱ)and Cd(Ⅱ)sorption capacity(maximum 120.43 mg/g and 27.7 mg/g,respectively.)in aqueous solution.The sorption of Pb(Ⅱ)and Cd(Ⅱ)onto best fitted pseudo-second-order kinetic equation and Langmuir model.The adsorption mechanism of Mg-doped Fh-HA on Pb(Ⅱ)and Cd(Ⅱ)involves surface adsorption,surface complexation and surface functional groups(such as carboxyl group,hydroxyl group).In addition,ionexchange and precipitation cannot be ignored.The Mg-doped Fh-HA is a low-cost and high-performance adsorption material and has a wide range of application prospects.展开更多
基金supported by the National Natural Science Foundation of China(51178209,91025015)the Fundamental Research Funds for the Central Universities in Lanzhou University(lzujbky-2011-66)
文摘The Hexi Corridor,our study area,is located in Northwest China and is also the most developed area of oasis farming in arid regions of Northwestern China.However,the rapid development of metallurgy and chemical industries in this region poses a great threat to the accumulation of heavy metals in crops.The objectives of this study are(1)to determine the influence of heavy metals on plant growth;(2)to assess the translocation capability of heavy metals in soil-plant system;and(3)to investigate the interaction between heavy metals.Pot experiments were conducted on cole(Brassica campestris L.)grown in the arid oasis soils singly and jointly treated with cadmium(Cd)and lead(Pb).Nine treatments were applied into the pots.Under the same planting conditions,three scenarios of Cd,Pb and Cd–Pb were designed to compare the interaction between Cd and Pb.The results showed that the response of cole weights to Cd,Pb and Cd–Pb treatments was slight,while Cd and Pb uptakes in cole were more sensitive to the single effects of Cd and Pb concentration in soils from the lower treatment levels.Under the influence of the single Cd,Pb and joint Cd–Pb treatments,Cd concentrations were lower in the cole roots than in the shoots,while for Pb,the results were opposite.Comparison studies revealed that the interaction of Cd and Pb could weaken the cole’s ability to uptake,concentrate and translocate heavy metals in arid oasis soils.
基金supported by the National Environmental Protection Commonweal Project of China (No. NEPCP 200809098)the Fundamental Research Funds for the Central Universities in Lanzhou University (No. lzujbky-2009-65)the National Natural Science Foundation of China (No. 91025015)
文摘A pot experiment was conducted to study the bioaccumulation and translocation of cadmium (Cd) in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the Cd-polluted oasis soil, Northwest of China. The results showed that Cd in the unpolluted oasis soil was mainly bound to carbonate fraction (F2) and Fe-Mn oxide fraction (F3). However, marked change of Cd fractions was observed with increasing soil Cd concentrations, in which the concentration of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p 〈 0.001 for F1, F2 and F3). The growth of cole and celery could be facilitated by low concentrations of Cd, but inhibited by high cortcentmdons. The correlation analysis between the fraction distribution coefficient of Cd in the soil and Cd concentration accumulated in the two vegetables showed that Cd in F1 in the soil made the greatest contribution on the accumulation of Cd in the two vegetables. The high bio-eoncentration factor and the translocation factor of Cd in both cote and celery were observed, and Cd had higher accumulation in the edible parts of the two vegetables. Therefore, both cole and celery grown in Cd-polluted oasis soil have higher risk to human health. And the two vegetables are not suitable to be cultivated as vegetables consumed by human in the Cd-polluted oasis soil.
基金supported by the National Environmental Protection Commonweal Project of China(No. NEPCP200809098)the Fundamental Research Funds for the Central Universities in Lanzhou University(No. lzujbky-2009-65)the National Natural Science Foundation of China(No. 91025015)
文摘A pot experiment was conducted to study the relationship between distribution of cadmium (Cd) and zinc (Zn) and their availability. to cole (Brassica campestris L.) grown in the multi-metal contaminated oasis soil in northwest of China. The results showed that Cd and Zn in the unpolluted oasis soil was mainly found in the residual fractionation, however, with increasing contents of Cd and Zn in the oasis soil, the distribution of Cd and Zn changed significantly. The growth of cole could be promoted by low Cd and Zn concentration, but significantly restrained by high concentrations. There was antagonistic effect among Cd and Zn in the multi-metals contaminated oasis soil. Stepwise regression analysis between fractionations distribution coefficients of the two meals in the soil and their contents in cole showed that both Cd and Zn in the exchangeable fractionation in the oasis soil made the most contribution on the uptake of Cd and Zn in cole. The bio-concentration factor (BCF) of Cd was greater than Zn in cole, and BCFs of the two metals in leaves were greater than those in roots. The translocation factors of the two metals in cole were greater than 1, and the two metals mainly accumulated in the edible parts in cole. Therefore, cole is not a suitable vegetable for the oasis soil because of the plants notable contamination by heavy metals.
基金supported by the National Natural Science Foundations of China (Nos.41771341 and 51978319)。
文摘In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques.The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II).The maximum adsorption capacities of lead and cadmium are respectively 105.807,37.986 mg/g.The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity(under optimal conditions).Moreover,it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process.It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh.Overall,the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.
基金funded by the Natural Science Foundation of China(Nos.41771341 and 51978319)Outstanding Youth Foundation of Gansu Province(No.20JR10RA651)Natural Science Foundation of Gansu Province(Nos.20JR5RA242 and20JR10RA635)。
文摘A magnesium doped ferrihydrite-humic acid coprecipitation(Mg-doped Fh-HA)was synthesized by coprecipitation method.The removal of heavy metals such as Pb(Ⅱ)and Cd(Ⅱ)was assessed.The isotherms and kinetic studies indicated that the Mg-doped Fh-HA exhibited a remarkable Pb(Ⅱ)and Cd(Ⅱ)sorption capacity(maximum 120.43 mg/g and 27.7 mg/g,respectively.)in aqueous solution.The sorption of Pb(Ⅱ)and Cd(Ⅱ)onto best fitted pseudo-second-order kinetic equation and Langmuir model.The adsorption mechanism of Mg-doped Fh-HA on Pb(Ⅱ)and Cd(Ⅱ)involves surface adsorption,surface complexation and surface functional groups(such as carboxyl group,hydroxyl group).In addition,ionexchange and precipitation cannot be ignored.The Mg-doped Fh-HA is a low-cost and high-performance adsorption material and has a wide range of application prospects.